The rewrite relation of the following TRS is considered.
b(f(b(x,z)),y) | → | f(f(f(b(z,b(y,z))))) | (1) |
c(f(f(c(x,a,z))),a,y) | → | b(y,f(b(a,z))) | (2) |
b(b(c(b(a,a),a,z),f(a)),y) | → | z | (3) |
b#(f(b(x,z)),y) | → | b#(z,b(y,z)) | (4) |
b#(f(b(x,z)),y) | → | b#(y,z) | (5) |
c#(f(f(c(x,a,z))),a,y) | → | b#(y,f(b(a,z))) | (6) |
c#(f(f(c(x,a,z))),a,y) | → | b#(a,z) | (7) |
The dependency pairs are split into 1 component.
b#(f(b(x,z)),y) | → | b#(y,z) | (5) |
b#(f(b(x,z)),y) | → | b#(z,b(y,z)) | (4) |
[b#(x1, x2)] | = |
|
||||||||||||||||||||||||||
[f(x1)] | = |
|
||||||||||||||||||||||||||
[b(x1, x2)] | = |
|
||||||||||||||||||||||||||
[c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||
[a] | = |
|
b(f(b(x,z)),y) | → | f(f(f(b(z,b(y,z))))) | (1) |
b(b(c(b(a,a),a,z),f(a)),y) | → | z | (3) |
b#(f(b(x,z)),y) | → | b#(y,z) | (5) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
b#(f(b(x,z)),y) | → | b#(z,b(y,z)) | (4) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.