The rewrite relation of the following TRS is considered.
b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (4) |
b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (5) |
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (6) |
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (7) |
f#(c(a,b(b(z,a),y),x)) | → | c#(x,b(z,x),y) | (8) |
f#(c(a,b(b(z,a),y),x)) | → | b#(z,x) | (9) |
c#(f(c(a,y,a)),x,z) | → | f#(b(b(z,z),f(b(y,b(x,a))))) | (10) |
c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (11) |
c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (12) |
c#(f(c(a,y,a)),x,z) | → | f#(b(y,b(x,a))) | (13) |
c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
c#(f(c(a,y,a)),x,z) | → | b#(x,a) | (15) |
The dependency pairs are split into 2 components.
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (7) |
[f#(x1)] | = |
|
||||||||||||||||||||||||||
[c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||
[a] | = |
|
||||||||||||||||||||||||||
[b(x1, x2)] | = |
|
||||||||||||||||||||||||||
[f(x1)] | = |
|
f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (7) |
There are no pairs anymore.
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (6) |
c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
[a] | = | 0 |
[b(x1, x2)] | = | 1 · x1 + 1 · x2 |
[c(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[f(x1)] | = | 1 · x1 |
[c#(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[b#(x1, x2)] | = | 1 · x1 + 1 · x2 |
[b#(x1, x2)] | = | 1 · x1 + 1 · x2 |
[a] | = | 0 |
[b(x1, x2)] | = | 2 · x1 + 2 · x2 |
[c(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 1 · x3 |
[c#(x1, x2, x3)] | = | 1 · x1 + 2 · x2 + 2 · x3 |
[f(x1)] | = | 1 · x1 |
b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (6) |
c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
There are no pairs anymore.