The rewrite relation of the following TRS is considered.
| b(a,f(b(b(z,y),a))) | → | z | (1) |
| c(c(z,x,a),a,y) | → | f(f(c(y,a,f(c(z,y,x))))) | (2) |
| f(f(c(a,y,z))) | → | b(y,b(z,z)) | (3) |
| c#(c(z,x,a),a,y) | → | f#(f(c(y,a,f(c(z,y,x))))) | (4) |
| c#(c(z,x,a),a,y) | → | f#(c(y,a,f(c(z,y,x)))) | (5) |
| c#(c(z,x,a),a,y) | → | c#(y,a,f(c(z,y,x))) | (6) |
| c#(c(z,x,a),a,y) | → | f#(c(z,y,x)) | (7) |
| c#(c(z,x,a),a,y) | → | c#(z,y,x) | (8) |
| f#(f(c(a,y,z))) | → | b#(y,b(z,z)) | (9) |
| f#(f(c(a,y,z))) | → | b#(z,z) | (10) |
The dependency pairs are split into 1 component.
| c#(c(z,x,a),a,y) | → | c#(z,y,x) | (8) |
| c#(c(z,x,a),a,y) | → | c#(y,a,f(c(z,y,x))) | (6) |
| [c#(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||||||||||||||||
| [c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||||||||||||||||
| [a] | = |
|
||||||||||||||||||||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||||||||||||||||||||
| [b(x1, x2)] | = |
|
| c#(c(z,x,a),a,y) | → | c#(y,a,f(c(z,y,x))) | (6) |
| [c(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
| [a] | = | 0 |
| [c#(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| c#(c(z,x,a),a,y) | → | c#(z,y,x) | (8) |
| 1 | > | 1 | |
| 3 | ≥ | 2 | |
| 1 | > | 3 |
As there is no critical graph in the transitive closure, there are no infinite chains.