The rewrite relation of the following TRS is considered.
| c(c(z,y,a),a,a) | → | b(z,y) | (1) |
| f(c(x,y,z)) | → | c(z,f(b(y,z)),a) | (2) |
| b(z,b(c(a,y,a),f(f(x)))) | → | c(c(y,a,z),z,x) | (3) |
| c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
| f#(c(x,y,z)) | → | c#(z,f(b(y,z)),a) | (5) |
| f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
| f#(c(x,y,z)) | → | b#(y,z) | (7) |
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (8) |
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (9) |
The dependency pairs are split into 2 components.
| f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
| [f#(x1)] | = |
|
||||||||||||||||||||||||||
| [c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||
| [b(x1, x2)] | = |
|
||||||||||||||||||||||||||
| [a] | = |
|
||||||||||||||||||||||||||
| [f(x1)] | = |
|
| b(z,b(c(a,y,a),f(f(x)))) | → | c(c(y,a,z),z,x) | (3) |
| c(c(z,y,a),a,a) | → | b(z,y) | (1) |
| f#(c(x,y,z)) | → | f#(b(y,z)) | (6) |
There are no pairs anymore.
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (8) |
| c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (9) |
| prec(b) | = | 1 | weight(b) | = | 11 | ||||
| prec(c) | = | 2 | weight(c) | = | 8 | ||||
| prec(a) | = | 0 | weight(a) | = | 4 | ||||
| prec(f) | = | 3 | weight(f) | = | 7 |
| π(b#) | = | 2 |
| π(b) | = | [1,2] |
| π(c) | = | [1,2] |
| π(a) | = | [] |
| π(f) | = | [] |
| π(c#) | = | 1 |
| b(z,b(c(a,y,a),f(f(x)))) | → | c(c(y,a,z),z,x) | (3) |
| c(c(z,y,a),a,a) | → | b(z,y) | (1) |
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(c(y,a,z),z,x) | (8) |
| c#(c(z,y,a),a,a) | → | b#(z,y) | (4) |
| b#(z,b(c(a,y,a),f(f(x)))) | → | c#(y,a,z) | (9) |
There are no pairs anymore.