The rewrite relation of the following TRS is considered.
| i(x,x) | → | i(a,b) | (1) |
| g(x,x) | → | g(a,b) | (2) |
| h(s(f(x))) | → | h(f(x)) | (3) |
| f(s(x)) | → | s(s(f(h(s(x))))) | (4) |
| f(g(s(x),y)) | → | f(g(x,s(y))) | (5) |
| h(g(x,s(y))) | → | h(g(s(x),y)) | (6) |
| h(i(x,y)) | → | i(i(c,h(h(y))),x) | (7) |
| g(a,g(x,g(b,g(a,g(x,y))))) | → | g(a,g(a,g(a,g(x,g(b,g(b,y)))))) | (8) |
| i#(x,x) | → | i#(a,b) | (9) |
| g#(x,x) | → | g#(a,b) | (10) |
| h#(s(f(x))) | → | h#(f(x)) | (11) |
| f#(s(x)) | → | f#(h(s(x))) | (12) |
| f#(s(x)) | → | h#(s(x)) | (13) |
| f#(g(s(x),y)) | → | f#(g(x,s(y))) | (14) |
| f#(g(s(x),y)) | → | g#(x,s(y)) | (15) |
| h#(g(x,s(y))) | → | h#(g(s(x),y)) | (16) |
| h#(g(x,s(y))) | → | g#(s(x),y) | (17) |
| h#(i(x,y)) | → | i#(i(c,h(h(y))),x) | (18) |
| h#(i(x,y)) | → | i#(c,h(h(y))) | (19) |
| h#(i(x,y)) | → | h#(h(y)) | (20) |
| h#(i(x,y)) | → | h#(y) | (21) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(a,g(a,g(x,g(b,g(b,y)))))) | (22) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(a,g(x,g(b,g(b,y))))) | (23) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(x,g(b,g(b,y)))) | (24) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(x,g(b,g(b,y))) | (25) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(b,g(b,y)) | (26) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(b,y) | (27) |
The dependency pairs are split into 3 components.
| f#(g(s(x),y)) | → | f#(g(x,s(y))) | (14) |
| f#(s(x)) | → | f#(h(s(x))) | (12) |
| [h(x1)] | = | 1 · x1 |
| [g(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s(x1)] | = | 1 · x1 |
| [f(x1)] | = | 1 · x1 |
| [a] | = | 0 |
| [b] | = | 0 |
| [i(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [c] | = | 0 |
| [f#(x1)] | = | 1 · x1 |
| h(g(x,s(y))) | → | h(g(s(x),y)) | (6) |
| h(s(f(x))) | → | h(f(x)) | (3) |
| g(x,x) | → | g(a,b) | (2) |
| h(i(x,y)) | → | i(i(c,h(h(y))),x) | (7) |
| f(s(x)) | → | s(s(f(h(s(x))))) | (4) |
| f(g(s(x),y)) | → | f(g(x,s(y))) | (5) |
| i(x,x) | → | i(a,b) | (1) |
| prec(g) | = | 3 | weight(g) | = | 2 | ||||
| prec(s) | = | 2 | weight(s) | = | 1 | ||||
| prec(h) | = | 1 | weight(h) | = | 1 | ||||
| prec(i) | = | 0 | weight(i) | = | 1 |
| π(f#) | = | 1 |
| π(g) | = | [] |
| π(s) | = | [] |
| π(h) | = | [] |
| π(i) | = | [] |
| g(x,x) | → | g(a,b) | (2) |
| h(s(f(x))) | → | h(f(x)) | (3) |
| h(g(x,s(y))) | → | h(g(s(x),y)) | (6) |
| h(i(x,y)) | → | i(i(c,h(h(y))),x) | (7) |
| i(x,x) | → | i(a,b) | (1) |
| f#(s(x)) | → | f#(h(s(x))) | (12) |
| [g(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [s(x1)] | = | 1 · x1 |
| [f#(x1)] | = | 1 · x1 |
| g(x,x) | → | g(a,b) | (2) |
| [g(x1, x2)] | = | 2 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [f#(x1)] | = | 1 · x1 |
| [s(x1)] | = | 1 + 1 · x1 |
| f#(g(s(x),y)) | → | f#(g(x,s(y))) | (14) |
There are no pairs anymore.
| h#(g(x,s(y))) | → | h#(g(s(x),y)) | (16) |
| h#(s(f(x))) | → | h#(f(x)) | (11) |
| h#(i(x,y)) | → | h#(h(y)) | (20) |
| h#(i(x,y)) | → | h#(y) | (21) |
| [h(x1)] | = | 1 · x1 |
| [g(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s(x1)] | = | 1 · x1 |
| [f(x1)] | = | 1 · x1 |
| [i(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [c] | = | 0 |
| [a] | = | 0 |
| [b] | = | 0 |
| [h#(x1)] | = | 1 · x1 |
| h(g(x,s(y))) | → | h(g(s(x),y)) | (6) |
| h(s(f(x))) | → | h(f(x)) | (3) |
| h(i(x,y)) | → | i(i(c,h(h(y))),x) | (7) |
| i(x,x) | → | i(a,b) | (1) |
| g(x,x) | → | g(a,b) | (2) |
| f(s(x)) | → | s(s(f(h(s(x))))) | (4) |
| f(g(s(x),y)) | → | f(g(x,s(y))) | (5) |
| [h#(x1)] | = | 0 + 4 · x1 |
| [g(x1, x2)] | = | 0 + 0 · x1 + 0 · x2 |
| [s(x1)] | = | 1/4 + 1 · x1 |
| [f(x1)] | = | 0 + 4 · x1 |
| [i(x1, x2)] | = | 0 + 4 · x1 + 1 · x2 |
| [h(x1)] | = | 0 + 1/4 · x1 |
| [a] | = | 0 |
| [b] | = | 0 |
| [c] | = | 0 |
| h#(s(f(x))) | → | h#(f(x)) | (11) |
| [h#(x1)] | = |
|
|||||||||||||||||||
| [g(x1, x2)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [i(x1, x2)] | = |
|
|||||||||||||||||||
| [h(x1)] | = |
|
|||||||||||||||||||
| [a] | = |
|
|||||||||||||||||||
| [b] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [c] | = |
|
| h#(g(x,s(y))) | → | h#(g(s(x),y)) | (16) |
| h#(i(y0,g(x0,s(x1)))) | → | h#(h(g(s(x0),x1))) | (28) |
| h#(i(y0,s(f(x0)))) | → | h#(h(f(x0))) | (29) |
| h#(i(y0,i(x0,x1))) | → | h#(i(i(c,h(h(x1))),x0)) | (30) |
| [h#(x1)] | = |
|
||||||||||||
| [i(x1, x2)] | = |
|
||||||||||||
| [g(x1, x2)] | = |
|
||||||||||||
| [s(x1)] | = |
|
||||||||||||
| [h(x1)] | = |
|
||||||||||||
| [f(x1)] | = |
|
||||||||||||
| [c] | = |
|
||||||||||||
| [a] | = |
|
||||||||||||
| [b] | = |
|
| h#(i(y0,s(f(x0)))) | → | h#(h(f(x0))) | (29) |
| [h#(x1)] | = |
|
||||||||||||
| [i(x1, x2)] | = |
|
||||||||||||
| [g(x1, x2)] | = |
|
||||||||||||
| [s(x1)] | = |
|
||||||||||||
| [h(x1)] | = |
|
||||||||||||
| [c] | = |
|
||||||||||||
| [a] | = |
|
||||||||||||
| [b] | = |
|
||||||||||||
| [f(x1)] | = |
|
| h#(i(y0,g(x0,s(x1)))) | → | h#(h(g(s(x0),x1))) | (28) |
We split (P,R) into the relative DP-problem (PD,P-PD,RD,R-RD) and (P-PD,R-RD) where the pairs PD
There are no rules.
and the rules RD| g(x,x) | → | g(a,b) | (2) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
| [s(x1)] | = | 0 |
| [a] | = | 1 |
| [b] | = | 1 |
| [c] | = | 0 |
| [h#(x1)] | = | 0 |
| [f(x1)] | = | 0 |
| [i(x1, x2)] | = | 0 |
| [h(x1)] | = | 0 |
| [g(x1, x2)] | = | 0 |
| h#0(i00(x,y)) | → | h#0(y) | (31) |
| h#0(i01(x,y)) | → | h#1(y) | (32) |
| h#0(i10(x,y)) | → | h#0(y) | (33) |
| h#0(i11(x,y)) | → | h#1(y) | (34) |
| h#0(i00(y0,i00(x0,x1))) | → | h#0(i00(i00(c,h0(h0(x1))),x0)) | (35) |
| h#0(i00(y0,i01(x0,x1))) | → | h#0(i00(i00(c,h0(h1(x1))),x0)) | (36) |
| h#0(i00(y0,i10(x0,x1))) | → | h#0(i01(i00(c,h0(h0(x1))),x0)) | (37) |
| h#0(i00(y0,i11(x0,x1))) | → | h#0(i01(i00(c,h0(h1(x1))),x0)) | (38) |
| h#0(i10(y0,i00(x0,x1))) | → | h#0(i00(i00(c,h0(h0(x1))),x0)) | (39) |
| h#0(i10(y0,i01(x0,x1))) | → | h#0(i00(i00(c,h0(h1(x1))),x0)) | (40) |
| h#0(i10(y0,i10(x0,x1))) | → | h#0(i01(i00(c,h0(h0(x1))),x0)) | (41) |
| h#0(i10(y0,i11(x0,x1))) | → | h#0(i01(i00(c,h0(h1(x1))),x0)) | (42) |
| h0(g00(x,s0(y))) | → | h0(g00(s0(x),y)) | (43) |
| h0(g00(x,s1(y))) | → | h0(g01(s0(x),y)) | (44) |
| h0(g10(x,s0(y))) | → | h0(g00(s1(x),y)) | (45) |
| h0(g10(x,s1(y))) | → | h0(g01(s1(x),y)) | (46) |
| h0(s0(f0(x))) | → | h0(f0(x)) | (47) |
| h0(s0(f1(x))) | → | h0(f1(x)) | (48) |
| h0(i00(x,y)) | → | i00(i00(c,h0(h0(y))),x) | (49) |
| h0(i01(x,y)) | → | i00(i00(c,h0(h1(y))),x) | (50) |
| h0(i10(x,y)) | → | i01(i00(c,h0(h0(y))),x) | (51) |
| h0(i11(x,y)) | → | i01(i00(c,h0(h1(y))),x) | (52) |
| i00(x,x) | → | i11(a,b) | (53) |
| i11(x,x) | → | i11(a,b) | (54) |
| g00(x,x) | → | g11(a,b) | (55) |
| g11(x,x) | → | g11(a,b) | (56) |
| f0(s0(x)) | → | s0(s0(f0(h0(s0(x))))) | (57) |
| f0(s1(x)) | → | s0(s0(f0(h0(s1(x))))) | (58) |
| f0(g00(s0(x),y)) | → | f0(g00(x,s0(y))) | (59) |
| f0(g01(s0(x),y)) | → | f0(g00(x,s1(y))) | (60) |
| f0(g00(s1(x),y)) | → | f0(g10(x,s0(y))) | (61) |
| f0(g01(s1(x),y)) | → | f0(g10(x,s1(y))) | (62) |
The dependency pairs are split into 1 component.
| h#0(i00(x,y)) | → | h#0(y) | (31) |
| h#0(i10(x,y)) | → | h#0(y) | (33) |
| h#0(i00(y0,i00(x0,x1))) | → | h#0(i00(i00(c,h0(h0(x1))),x0)) | (35) |
| h#0(i00(y0,i01(x0,x1))) | → | h#0(i00(i00(c,h0(h1(x1))),x0)) | (36) |
| h#0(i10(y0,i00(x0,x1))) | → | h#0(i00(i00(c,h0(h0(x1))),x0)) | (39) |
| h#0(i10(y0,i01(x0,x1))) | → | h#0(i00(i00(c,h0(h1(x1))),x0)) | (40) |
| [i00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [i11(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [h0(x1)] | = | 1 · x1 |
| [g10(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [s0(x1)] | = | 1 · x1 |
| [g00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [s1(x1)] | = | 1 + 1 · x1 |
| [f0(x1)] | = | 1 · x1 |
| [g01(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [f1(x1)] | = | 1 · x1 |
| [c] | = | 0 |
| [i01(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 · x1 |
| [i10(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [g11(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h#0(x1)] | = | 1 · x1 |
| i00(x,x) | → | i11(a,b) | (53) |
| h0(g10(x,s0(y))) | → | h0(g00(s1(x),y)) | (45) |
| h0(g00(x,s0(y))) | → | h0(g00(s0(x),y)) | (43) |
| h0(s0(f0(x))) | → | h0(f0(x)) | (47) |
| h0(g00(x,s1(y))) | → | h0(g01(s0(x),y)) | (44) |
| h0(g10(x,s1(y))) | → | h0(g01(s1(x),y)) | (46) |
| h0(s0(f1(x))) | → | h0(f1(x)) | (48) |
| h0(i00(x,y)) | → | i00(i00(c,h0(h0(y))),x) | (49) |
| h0(i01(x,y)) | → | i00(i00(c,h0(h1(y))),x) | (50) |
| h0(i10(x,y)) | → | i01(i00(c,h0(h0(y))),x) | (51) |
| h0(i11(x,y)) | → | i01(i00(c,h0(h1(y))),x) | (52) |
| g00(x,x) | → | g11(a,b) | (55) |
| f0(s0(x)) | → | s0(s0(f0(h0(s0(x))))) | (57) |
| f0(s1(x)) | → | s0(s0(f0(h0(s1(x))))) | (58) |
| f0(g01(s0(x),y)) | → | f0(g00(x,s1(y))) | (60) |
| f0(g00(s0(x),y)) | → | f0(g00(x,s0(y))) | (59) |
| f0(g00(s1(x),y)) | → | f0(g10(x,s0(y))) | (61) |
| f0(g01(s1(x),y)) | → | f0(g10(x,s1(y))) | (62) |
| h#0(i10(x,y)) | → | h#0(y) | (33) |
| h#0(i10(y0,i00(x0,x1))) | → | h#0(i00(i00(c,h0(h0(x1))),x0)) | (39) |
| h#0(i10(y0,i01(x0,x1))) | → | h#0(i00(i00(c,h0(h1(x1))),x0)) | (40) |
| h0(i10(x,y)) | → | i01(i00(c,h0(h0(y))),x) | (51) |
| [i00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [i11(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [h0(x1)] | = | 1 · x1 |
| [g10(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [s0(x1)] | = | 1 · x1 |
| [g00(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [s1(x1)] | = | 1 · x1 |
| [f0(x1)] | = | 1 · x1 |
| [g01(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [f1(x1)] | = | 1 · x1 |
| [c] | = | 0 |
| [i01(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 · x1 |
| [g11(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h#0(x1)] | = | 1 · x1 |
| g00(x,x) | → | g11(a,b) | (55) |
There are no pairs anymore.
| [h#(x1)] | = |
|
|||||||||||||||||||
| [i(x1, x2)] | = |
|
|||||||||||||||||||
| [c] | = |
|
|||||||||||||||||||
| [h(x1)] | = |
|
|||||||||||||||||||
| [g(x1, x2)] | = |
|
|||||||||||||||||||
| [s(x1)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [a] | = |
|
|||||||||||||||||||
| [b] | = |
|
| h#(i(x,y)) | → | h#(y) | (21) |
| h#(i(y0,i(x0,x1))) | → | h#(i(i(c,h(h(x1))),x0)) | (30) |
There are no pairs anymore.
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(x,g(b,g(b,y)))) | (24) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(a,g(x,g(b,g(b,y))))) | (23) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(x,g(b,g(b,y))) | (25) |
| [g(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [g#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| g(x,x) | → | g(a,b) | (2) |
| g(a,g(x,g(b,g(a,g(x,y))))) | → | g(a,g(a,g(a,g(x,g(b,g(b,y)))))) | (8) |
| g#(a,g(g(b,g(b,y1)),g(b,g(a,g(g(b,g(b,y1)),y1))))) | → | g#(a,g(a,b)) | (63) |
| g#(a,g(a,g(b,g(a,g(a,g(a,g(b,x1))))))) | → | g#(a,g(a,g(a,g(a,g(b,g(b,g(b,x1))))))) | (64) |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(y0,g(b,g(a,b)))) | (65) |
The dependency pairs are split into 1 component.
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(x,g(b,g(b,y))) | (25) |
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(a,g(a,g(x,g(b,g(b,y))))) | (23) |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(y0,g(b,g(a,b)))) | (65) |
| g#(a,g(g(b,g(b,y1)),g(b,g(a,g(g(b,g(b,y1)),y1))))) | → | g#(a,g(a,g(a,b))) | (66) |
| g#(a,g(a,g(b,g(a,g(a,g(a,g(b,x1))))))) | → | g#(a,g(a,g(a,g(a,g(a,g(b,g(b,g(b,x1)))))))) | (67) |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(a,g(y0,g(b,g(a,b))))) | (68) |
The dependency pairs are split into 1 component.
| g#(a,g(x,g(b,g(a,g(x,y))))) | → | g#(x,g(b,g(b,y))) | (25) |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(y0,g(b,g(a,b)))) | (65) |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(a,g(y0,g(b,g(a,b))))) | (68) |
| g#(a,g(a,g(b,g(a,g(a,x1))))) | → | g#(a,g(b,g(b,x1))) | (69) |
| g#(a,g(b,g(b,g(a,g(b,b))))) | → | g#(a,g(a,g(b,g(b,g(a,b))))) | (70) |
The dependency pairs are split into 1 component.
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(y0,g(b,g(a,b)))) | (65) |
| g#(a,g(a,g(b,g(a,g(a,x1))))) | → | g#(a,g(b,g(b,x1))) | (69) |
| [g(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [g#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| g(x,x) | → | g(a,b) | (2) |
| [g(x1, x2)] | = | 2 + 1 · x1 + 2 · x2 |
| [a] | = | 0 |
| [b] | = | 0 |
| [g#(x1, x2)] | = | 1 · x1 + 1 · x2 |
| g#(a,g(y0,g(b,g(a,g(y0,b))))) | → | g#(a,g(y0,g(b,g(a,b)))) | (65) |
| g#(a,g(a,g(b,g(a,g(a,x1))))) | → | g#(a,g(b,g(b,x1))) | (69) |
There are no pairs anymore.