Certification Problem

Input (TPDB TRS_Standard/Secret_07_TRS/secret2)

The rewrite relation of the following TRS is considered.

a(h,h,h,x) s(x) (1)
a(l,x,s(y),h) a(l,x,y,s(h)) (2)
a(l,x,s(y),s(z)) a(l,x,y,a(l,x,s(y),z)) (3)
a(l,s(x),h,z) a(l,x,z,z) (4)
a(s(l),h,h,z) a(l,z,h,z) (5)
+(x,h) x (6)
+(h,x) x (7)
+(s(x),s(y)) s(s(+(x,y))) (8)
+(+(x,y),z) +(x,+(y,z)) (9)
s(h) 1 (10)
*(h,x) h (11)
*(x,h) h (12)
*(s(x),s(y)) s(+(+(*(x,y),x),y)) (13)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Rule Removal

Using the
prec(a) = 2 stat(a) = lex
prec(h) = 1 stat(h) = lex
prec(s) = 0 stat(s) = lex
prec(+) = 3 stat(+) = lex
prec(1) = 1 stat(1) = lex
prec(*) = 4 stat(*) = lex

π(a) = [1,2,3,4]
π(h) = []
π(s) = [1]
π(+) = [1,2]
π(1) = []
π(*) = [2,1]

all of the following rules can be deleted.
a(h,h,h,x) s(x) (1)
a(l,x,s(y),h) a(l,x,y,s(h)) (2)
a(l,x,s(y),s(z)) a(l,x,y,a(l,x,s(y),z)) (3)
a(l,s(x),h,z) a(l,x,z,z) (4)
a(s(l),h,h,z) a(l,z,h,z) (5)
+(x,h) x (6)
+(h,x) x (7)
+(s(x),s(y)) s(s(+(x,y))) (8)
+(+(x,y),z) +(x,+(y,z)) (9)
s(h) 1 (10)
*(h,x) h (11)
*(x,h) h (12)
*(s(x),s(y)) s(+(+(*(x,y),x),y)) (13)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.