Certification Problem

Input (TPDB TRS_Standard/Strategy_removed_AG01/#4.33)

The rewrite relation of the following TRS is considered.

sum(cons(s(n),x),cons(m,y)) sum(cons(n,x),cons(s(m),y)) (1)
sum(cons(0,x),y) sum(x,y) (2)
sum(nil,y) y (3)
weight(cons(n,cons(m,x))) weight(sum(cons(n,cons(m,x)),cons(0,x))) (4)
weight(cons(n,nil)) n (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 Switch to Innermost Termination

The TRS is overlay and locally confluent:

10

Hence, it suffices to show innermost termination in the following.

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
sum#(cons(s(n),x),cons(m,y)) sum#(cons(n,x),cons(s(m),y)) (6)
sum#(cons(0,x),y) sum#(x,y) (7)
weight#(cons(n,cons(m,x))) weight#(sum(cons(n,cons(m,x)),cons(0,x))) (8)
weight#(cons(n,cons(m,x))) sum#(cons(n,cons(m,x)),cons(0,x)) (9)

1.1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.