The rewrite relation of the following TRS is considered.
O(0) | → | 0 | (1) |
+(0,x) | → | x | (2) |
+(x,0) | → | x | (3) |
+(O(x),O(y)) | → | O(+(x,y)) | (4) |
+(O(x),I(y)) | → | I(+(x,y)) | (5) |
+(I(x),O(y)) | → | I(+(x,y)) | (6) |
+(I(x),I(y)) | → | O(+(+(x,y),I(0))) | (7) |
+(x,+(y,z)) | → | +(+(x,y),z) | (8) |
-(x,0) | → | x | (9) |
-(0,x) | → | 0 | (10) |
-(O(x),O(y)) | → | O(-(x,y)) | (11) |
-(O(x),I(y)) | → | I(-(-(x,y),I(1))) | (12) |
-(I(x),O(y)) | → | I(-(x,y)) | (13) |
-(I(x),I(y)) | → | O(-(x,y)) | (14) |
not(true) | → | false | (15) |
not(false) | → | true | (16) |
and(x,true) | → | x | (17) |
and(x,false) | → | false | (18) |
if(true,x,y) | → | x | (19) |
if(false,x,y) | → | y | (20) |
ge(O(x),O(y)) | → | ge(x,y) | (21) |
ge(O(x),I(y)) | → | not(ge(y,x)) | (22) |
ge(I(x),O(y)) | → | ge(x,y) | (23) |
ge(I(x),I(y)) | → | ge(x,y) | (24) |
ge(x,0) | → | true | (25) |
ge(0,O(x)) | → | ge(0,x) | (26) |
ge(0,I(x)) | → | false | (27) |
Log'(0) | → | 0 | (28) |
Log'(I(x)) | → | +(Log'(x),I(0)) | (29) |
Log'(O(x)) | → | if(ge(x,I(0)),+(Log'(x),I(0)),0) | (30) |
Log(x) | → | -(Log'(x),I(0)) | (31) |
Val(L(x)) | → | x | (32) |
Val(N(x,l,r)) | → | x | (33) |
Min(L(x)) | → | x | (34) |
Min(N(x,l,r)) | → | Min(l) | (35) |
Max(L(x)) | → | x | (36) |
Max(N(x,l,r)) | → | Max(r) | (37) |
BS(L(x)) | → | true | (38) |
BS(N(x,l,r)) | → | and(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) | (39) |
Size(L(x)) | → | I(0) | (40) |
Size(N(x,l,r)) | → | +(+(Size(l),Size(r)),I(1)) | (41) |
WB(L(x)) | → | true | (42) |
WB(N(x,l,r)) | → | and(if(ge(Size(l),Size(r)),ge(I(0),-(Size(l),Size(r))),ge(I(0),-(Size(r),Size(l)))),and(WB(l),WB(r))) | (43) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 2 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 2 · x2 |
[1] | = | 0 |
[not(x1)] | = | 1 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[and(x1, x2)] | = | 1 · x1 + 2 · x2 |
[if(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 1 · x2 |
[Log'(x1)] | = | 1 · x1 |
[Log(x1)] | = | 2 + 1 · x1 |
[Val(x1)] | = | 2 · x1 |
[L(x1)] | = | 1 · x1 |
[N(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 1 · x3 |
[l] | = | 0 |
[r] | = | 0 |
[Min(x1)] | = | 2 · x1 |
[Max(x1)] | = | 1 · x1 |
[BS(x1)] | = | 2 · x1 |
[Size(x1)] | = | 1 · x1 |
[WB(x1)] | = | 1 · x1 |
Log(x) | → | -(Log'(x),I(0)) | (31) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 1 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 1 · x2 |
[1] | = | 0 |
[not(x1)] | = | 1 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[and(x1, x2)] | = | 1 · x1 + 1 · x2 |
[if(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 1 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 1 · x2 |
[Log'(x1)] | = | 2 · x1 |
[Val(x1)] | = | 1 + 2 · x1 |
[L(x1)] | = | 1 · x1 |
[N(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 1 · x3 |
[l] | = | 0 |
[r] | = | 0 |
[Min(x1)] | = | 1 · x1 |
[Max(x1)] | = | 1 · x1 |
[BS(x1)] | = | 2 · x1 |
[Size(x1)] | = | 1 · x1 |
[WB(x1)] | = | 1 · x1 |
Val(L(x)) | → | x | (32) |
Val(N(x,l,r)) | → | x | (33) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 2 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 2 · x2 |
[1] | = | 0 |
[not(x1)] | = | 2 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[and(x1, x2)] | = | 1 · x1 + 2 · x2 |
[if(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 1 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 1 · x2 |
[Log'(x1)] | = | 2 · x1 |
[Min(x1)] | = | 1 · x1 |
[L(x1)] | = | 1 · x1 |
[N(x1, x2, x3)] | = | 2 + 2 · x1 + 2 · x2 + 1 · x3 |
[l] | = | 0 |
[r] | = | 0 |
[Max(x1)] | = | 2 + 2 · x1 |
[BS(x1)] | = | 2 · x1 |
[Size(x1)] | = | 2 · x1 |
[WB(x1)] | = | 1 · x1 |
Min(N(x,l,r)) | → | Min(l) | (35) |
Max(L(x)) | → | x | (36) |
Max(N(x,l,r)) | → | Max(r) | (37) |
BS(N(x,l,r)) | → | and(and(ge(x,Max(l)),ge(Min(r),x)),and(BS(l),BS(r))) | (39) |
Size(N(x,l,r)) | → | +(+(Size(l),Size(r)),I(1)) | (41) |
WB(N(x,l,r)) | → | and(if(ge(Size(l),Size(r)),ge(I(0),-(Size(l),Size(r))),ge(I(0),-(Size(r),Size(l)))),and(WB(l),WB(r))) | (43) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 1 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 2 · x2 |
[1] | = | 0 |
[not(x1)] | = | 1 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[and(x1, x2)] | = | 2 + 1 · x1 + 2 · x2 |
[if(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 1 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 2 · x2 |
[Log'(x1)] | = | 2 · x1 |
[Min(x1)] | = | 1 · x1 |
[L(x1)] | = | 1 · x1 |
[BS(x1)] | = | 2 + 2 · x1 |
[Size(x1)] | = | 1 · x1 |
[WB(x1)] | = | 2 + 2 · x1 |
and(x,true) | → | x | (17) |
and(x,false) | → | false | (18) |
BS(L(x)) | → | true | (38) |
WB(L(x)) | → | true | (42) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 2 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 1 · x2 |
[1] | = | 0 |
[not(x1)] | = | 2 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[if(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 2 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 1 · x2 |
[Log'(x1)] | = | 2 · x1 |
[Min(x1)] | = | 1 + 1 · x1 |
[L(x1)] | = | 1 · x1 |
[Size(x1)] | = | 1 · x1 |
Min(L(x)) | → | x | (34) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 2 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 1 · x2 |
[1] | = | 0 |
[not(x1)] | = | 1 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[if(x1, x2, x3)] | = | 1 · x1 + 1 · x2 + 2 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 1 · x2 |
[Log'(x1)] | = | 1 · x1 |
[Size(x1)] | = | 1 + 2 · x1 |
[L(x1)] | = | 2 + 1 · x1 |
Size(L(x)) | → | I(0) | (40) |
[O(x1)] | = | 2 · x1 |
[0] | = | 0 |
[+(x1, x2)] | = | 1 · x1 + 2 · x2 |
[I(x1)] | = | 2 · x1 |
[-(x1, x2)] | = | 1 · x1 + 2 · x2 |
[1] | = | 0 |
[not(x1)] | = | 1 · x1 |
[true] | = | 0 |
[false] | = | 0 |
[if(x1, x2, x3)] | = | 2 · x1 + 1 · x2 + 2 · x3 |
[ge(x1, x2)] | = | 1 · x1 + 2 · x2 |
[Log'(x1)] | = | 2 + 2 · x1 |
Log'(0) | → | 0 | (28) |
+#(O(x),O(y)) | → | O#(+(x,y)) | (44) |
+#(O(x),O(y)) | → | +#(x,y) | (45) |
+#(O(x),I(y)) | → | +#(x,y) | (46) |
+#(I(x),O(y)) | → | +#(x,y) | (47) |
+#(I(x),I(y)) | → | O#(+(+(x,y),I(0))) | (48) |
+#(I(x),I(y)) | → | +#(+(x,y),I(0)) | (49) |
+#(I(x),I(y)) | → | +#(x,y) | (50) |
+#(x,+(y,z)) | → | +#(+(x,y),z) | (51) |
+#(x,+(y,z)) | → | +#(x,y) | (52) |
-#(O(x),O(y)) | → | O#(-(x,y)) | (53) |
-#(O(x),O(y)) | → | -#(x,y) | (54) |
-#(O(x),I(y)) | → | -#(-(x,y),I(1)) | (55) |
-#(O(x),I(y)) | → | -#(x,y) | (56) |
-#(I(x),O(y)) | → | -#(x,y) | (57) |
-#(I(x),I(y)) | → | O#(-(x,y)) | (58) |
-#(I(x),I(y)) | → | -#(x,y) | (59) |
ge#(O(x),O(y)) | → | ge#(x,y) | (60) |
ge#(O(x),I(y)) | → | not#(ge(y,x)) | (61) |
ge#(O(x),I(y)) | → | ge#(y,x) | (62) |
ge#(I(x),O(y)) | → | ge#(x,y) | (63) |
ge#(I(x),I(y)) | → | ge#(x,y) | (64) |
ge#(0,O(x)) | → | ge#(0,x) | (65) |
Log'#(I(x)) | → | +#(Log'(x),I(0)) | (66) |
Log'#(I(x)) | → | Log'#(x) | (67) |
Log'#(O(x)) | → | if#(ge(x,I(0)),+(Log'(x),I(0)),0) | (68) |
Log'#(O(x)) | → | ge#(x,I(0)) | (69) |
Log'#(O(x)) | → | +#(Log'(x),I(0)) | (70) |
Log'#(O(x)) | → | Log'#(x) | (71) |
The dependency pairs are split into 5 components.
Log'#(O(x)) | → | Log'#(x) | (71) |
Log'#(I(x)) | → | Log'#(x) | (67) |
[O(x1)] | = | 1 · x1 |
[I(x1)] | = | 1 · x1 |
[Log'#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
Log'#(O(x)) | → | Log'#(x) | (71) |
1 | > | 1 | |
Log'#(I(x)) | → | Log'#(x) | (67) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
ge#(O(x),I(y)) | → | ge#(y,x) | (62) |
ge#(O(x),O(y)) | → | ge#(x,y) | (60) |
ge#(I(x),O(y)) | → | ge#(x,y) | (63) |
ge#(I(x),I(y)) | → | ge#(x,y) | (64) |
[O(x1)] | = | 1 · x1 |
[I(x1)] | = | 1 · x1 |
[ge#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ge#(O(x),I(y)) | → | ge#(y,x) | (62) |
2 | > | 1 | |
1 | > | 2 | |
ge#(O(x),O(y)) | → | ge#(x,y) | (60) |
1 | > | 1 | |
2 | > | 2 | |
ge#(I(x),O(y)) | → | ge#(x,y) | (63) |
1 | > | 1 | |
2 | > | 2 | |
ge#(I(x),I(y)) | → | ge#(x,y) | (64) |
1 | > | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
+#(O(x),I(y)) | → | +#(x,y) | (46) |
+#(O(x),O(y)) | → | +#(x,y) | (45) |
+#(I(x),O(y)) | → | +#(x,y) | (47) |
+#(I(x),I(y)) | → | +#(+(x,y),I(0)) | (49) |
+#(I(x),I(y)) | → | +#(x,y) | (50) |
+#(x,+(y,z)) | → | +#(+(x,y),z) | (51) |
+#(x,+(y,z)) | → | +#(x,y) | (52) |
[+(x1, x2)] | = | 1 · x1 + 1 · x2 |
[0] | = | 0 |
[O(x1)] | = | 1 · x1 |
[I(x1)] | = | 1 · x1 |
[+#(x1, x2)] | = | 1 · x1 + 1 · x2 |
+(0,x) | → | x | (2) |
+(x,0) | → | x | (3) |
+(O(x),O(y)) | → | O(+(x,y)) | (4) |
+(O(x),I(y)) | → | I(+(x,y)) | (5) |
+(I(x),O(y)) | → | I(+(x,y)) | (6) |
+(I(x),I(y)) | → | O(+(+(x,y),I(0))) | (7) |
+(x,+(y,z)) | → | +(+(x,y),z) | (8) |
O(0) | → | 0 | (1) |
[+(x1, x2)] | = | 1 · x1 + 1 · x2 |
[0] | = | 0 |
[O(x1)] | = | 2 · x1 |
[I(x1)] | = | 2 + 2 · x1 |
[+#(x1, x2)] | = | 2 · x1 + 2 · x2 |
+#(O(x),I(y)) | → | +#(x,y) | (46) |
+#(I(x),O(y)) | → | +#(x,y) | (47) |
+#(I(x),I(y)) | → | +#(+(x,y),I(0)) | (49) |
+#(I(x),I(y)) | → | +#(x,y) | (50) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
+#(O(x),O(y)) | → | +#(x,y) | (45) |
1 | > | 1 | |
2 | > | 2 | |
+#(x,+(y,z)) | → | +#(+(x,y),z) | (51) |
2 | > | 2 | |
+#(x,+(y,z)) | → | +#(x,y) | (52) |
1 | ≥ | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-#(O(x),I(y)) | → | -#(-(x,y),I(1)) | (55) |
-#(O(x),I(y)) | → | -#(x,y) | (56) |
-#(O(x),O(y)) | → | -#(x,y) | (54) |
-#(I(x),O(y)) | → | -#(x,y) | (57) |
-#(I(x),I(y)) | → | -#(x,y) | (59) |
[-(x1, x2)] | = | 1 · x1 + 1 · x2 |
[0] | = | 0 |
[O(x1)] | = | 1 · x1 |
[I(x1)] | = | 1 · x1 |
[1] | = | 0 |
[-#(x1, x2)] | = | 1 · x1 + 1 · x2 |
-(x,0) | → | x | (9) |
-(0,x) | → | 0 | (10) |
-(O(x),O(y)) | → | O(-(x,y)) | (11) |
-(O(x),I(y)) | → | I(-(-(x,y),I(1))) | (12) |
-(I(x),O(y)) | → | I(-(x,y)) | (13) |
-(I(x),I(y)) | → | O(-(x,y)) | (14) |
O(0) | → | 0 | (1) |
[-(x1, x2)] | = | 1 · x1 + 2 · x2 |
[0] | = | 2 |
[O(x1)] | = | 2 · x1 |
[I(x1)] | = | 2 · x1 |
[1] | = | 0 |
[-#(x1, x2)] | = | 2 · x1 + 2 · x2 |
-(x,0) | → | x | (9) |
O(0) | → | 0 | (1) |
20
Hence, it suffices to show innermost termination in the following.prec(0) | = | 2 | weight(0) | = | 1 | ||||
prec(1) | = | 4 | weight(1) | = | 2 | ||||
prec(O) | = | 1 | weight(O) | = | 4 | ||||
prec(I) | = | 0 | weight(I) | = | 2 | ||||
prec(-) | = | 3 | weight(-) | = | 0 | ||||
prec(-#) | = | 5 | weight(-#) | = | 0 |
-#(O(x),I(y)) | → | -#(-(x,y),I(1)) | (55) |
-#(O(x),I(y)) | → | -#(x,y) | (56) |
-#(O(x),O(y)) | → | -#(x,y) | (54) |
-#(I(x),O(y)) | → | -#(x,y) | (57) |
-#(I(x),I(y)) | → | -#(x,y) | (59) |
-(0,x) | → | 0 | (10) |
-(O(x),O(y)) | → | O(-(x,y)) | (11) |
-(O(x),I(y)) | → | I(-(-(x,y),I(1))) | (12) |
-(I(x),O(y)) | → | I(-(x,y)) | (13) |
-(I(x),I(y)) | → | O(-(x,y)) | (14) |
There are no pairs anymore.
ge#(0,O(x)) | → | ge#(0,x) | (65) |
[0] | = | 0 |
[O(x1)] | = | 1 · x1 |
[ge#(x1, x2)] | = | 1 · x1 + 1 · x2 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ge#(0,O(x)) | → | ge#(0,x) | (65) |
1 | ≥ | 1 | |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.