The rewrite relation of the following TRS is considered.
| f(f(a,x),y) | → | f(y,f(x,f(a,f(h(a),a)))) | (1) |
The TRS is overlay and locally confluent:
10Hence, it suffices to show innermost termination in the following.
| f#(f(a,x),y) | → | f#(y,f(x,f(a,f(h(a),a)))) | (2) |
| f#(f(a,x),y) | → | f#(x,f(a,f(h(a),a))) | (3) |
| f#(f(a,x),y) | → | f#(a,f(h(a),a)) | (4) |
| f#(f(a,x),y) | → | f#(h(a),a) | (5) |
The dependency pairs are split into 1 component.
| f#(f(a,x),y) | → | f#(x,f(a,f(h(a),a))) | (3) |
| f#(f(a,x),y) | → | f#(y,f(x,f(a,f(h(a),a)))) | (2) |
| f#(f(a,f(a,y_0)),x1) | → | f#(f(a,y_0),f(a,f(h(a),a))) | (6) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
| [a] | = | 1 |
| [f(x1, x2)] | = | 0 |
| [h(x1)] | = | 0 |
| [f#(x1, x2)] | = | 0 |
| f#00(f10(a,x),y) | → | f#00(y,f00(x,f10(a,f01(h1(a),a)))) | (7) |
| f#01(f10(a,x),y) | → | f#10(y,f00(x,f10(a,f01(h1(a),a)))) | (8) |
| f#00(f11(a,x),y) | → | f#00(y,f10(x,f10(a,f01(h1(a),a)))) | (9) |
| f#01(f11(a,x),y) | → | f#10(y,f10(x,f10(a,f01(h1(a),a)))) | (10) |
| f#00(f10(a,f10(a,y_0)),x1) | → | f#00(f10(a,y_0),f10(a,f01(h1(a),a))) | (11) |
| f#01(f10(a,f10(a,y_0)),x1) | → | f#00(f10(a,y_0),f10(a,f01(h1(a),a))) | (12) |
| f#00(f10(a,f11(a,y_0)),x1) | → | f#00(f11(a,y_0),f10(a,f01(h1(a),a))) | (13) |
| f#01(f10(a,f11(a,y_0)),x1) | → | f#00(f11(a,y_0),f10(a,f01(h1(a),a))) | (14) |
| f00(f10(a,x),y) | → | f00(y,f00(x,f10(a,f01(h1(a),a)))) | (15) |
| f01(f10(a,x),y) | → | f10(y,f00(x,f10(a,f01(h1(a),a)))) | (16) |
| f00(f11(a,x),y) | → | f00(y,f10(x,f10(a,f01(h1(a),a)))) | (17) |
| f01(f11(a,x),y) | → | f10(y,f10(x,f10(a,f01(h1(a),a)))) | (18) |
Innermost rewriting w.r.t. the following left-hand sides is considered:
| f00(f10(a,x0),x1) |
| f01(f10(a,x0),x1) |
| f00(f11(a,x0),x1) |
| f01(f11(a,x0),x1) |
The dependency pairs are split into 1 component.
| f#00(f10(a,x),y) | → | f#00(y,f00(x,f10(a,f01(h1(a),a)))) | (7) |
| f#00(f11(a,x),y) | → | f#00(y,f10(x,f10(a,f01(h1(a),a)))) | (9) |
| f#00(f10(a,f10(a,y_0)),x1) | → | f#00(f10(a,y_0),f10(a,f01(h1(a),a))) | (11) |
| f#00(f10(a,f11(a,y_0)),x1) | → | f#00(f11(a,y_0),f10(a,f01(h1(a),a))) | (13) |
| [f00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f11(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [f10(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f01(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 · x1 |
| [f#00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| f00(f11(a,x),y) | → | f00(y,f10(x,f10(a,f01(h1(a),a)))) | (17) |
| f00(f10(a,x),y) | → | f00(y,f00(x,f10(a,f01(h1(a),a)))) | (15) |
| [f00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f11(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [f10(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f01(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 · x1 |
| [f#00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| f#00(f11(a,x),y) | → | f#00(y,f10(x,f10(a,f01(h1(a),a)))) | (9) |
| f00(f11(a,x),y) | → | f00(y,f10(x,f10(a,f01(h1(a),a)))) | (17) |
The dependency pairs are split into 1 component.
| f#00(f10(a,x),y) | → | f#00(y,f00(x,f10(a,f01(h1(a),a)))) | (7) |
| f#00(f10(a,f10(a,y_0)),x1) | → | f#00(f10(a,y_0),f10(a,f01(h1(a),a))) | (11) |
| [f#00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f10(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [a] | = | 1 |
| [f00(x1, x2)] | = | 1 |
| [f01(x1, x2)] | = | 0 |
| [h1(x1)] | = | 0 |
| f#00(f10(a,x),y) | → | f#00(y,f00(x,f10(a,f01(h1(a),a)))) | (7) |
| [f#00(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [f10(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [a] | = | 0 |
| [f01(x1, x2)] | = | 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 · x1 |
| [f#00(x1, x2)] | = | 1 · x1 |
| [f10(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [a] | = | 1 |
| [f01(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [h1(x1)] | = | 1 + 1 · x1 |
| f#00(f10(a,f10(a,y_0)),x1) | → | f#00(f10(a,y_0),f10(a,f01(h1(a),a))) | (11) |
There are no pairs anymore.