The rewrite relation of the following TRS is considered.
f(x,f(a,y)) | → | f(a,f(f(a,h(f(a,x))),y)) | (1) |
f#(x,f(a,y)) | → | f#(a,f(f(a,h(f(a,x))),y)) | (2) |
f#(x,f(a,y)) | → | f#(f(a,h(f(a,x))),y) | (3) |
f#(x,f(a,y)) | → | f#(a,h(f(a,x))) | (4) |
f#(x,f(a,y)) | → | f#(a,x) | (5) |
The dependency pairs are split into 1 component.
f#(x,f(a,y)) | → | f#(f(a,h(f(a,x))),y) | (3) |
f#(x,f(a,y)) | → | f#(a,f(f(a,h(f(a,x))),y)) | (2) |
f#(x,f(a,y)) | → | f#(a,x) | (5) |
[f#(x1, x2)] | = | 1 + x1 + x2 |
[f(x1, x2)] | = | 1 + 2 · x2 |
[h(x1)] | = | -2 |
[a] | = | 0 |
f#(x,f(a,y)) | → | f#(a,x) | (5) |
prec(f) | = | 1 | weight(f) | = | 1 |
π(f#) | = | 2 |
π(f) | = | [2] |
f#(x,f(a,y)) | → | f#(f(a,h(f(a,x))),y) | (3) |
f#(a,f(a,x1)) | → | f#(a,f(f(a,h(f(a,a))),x1)) | (6) |
[f#(x1, x2)] | = | -2 + 2 · x1 + x2 |
[f(x1, x2)] | = | -1 + x1 + 2 · x2 |
[a] | = | 2 |
[h(x1)] | = | -2 |
f#(a,f(a,x1)) | → | f#(a,f(f(a,h(f(a,a))),x1)) | (6) |
There are no pairs anymore.