The rewrite relation of the following TRS is considered.
| f(f(a,a),x) | → | f(x,f(f(a,f(a,a)),a)) | (1) |
We uncurry the binary symbol f in combination with the following symbol map which also determines the applicative arities of these symbols.
| a | is mapped to | a, | a1(x1), | a2(x1, x2) |
| a2(a,x) | → | f(x,a2(a1(a),a)) | (4) |
| f(a,y1) | → | a1(y1) | (2) |
| f(a1(x0),y1) | → | a2(x0,y1) | (3) |
The TRS is overlay and locally confluent:
10Hence, it suffices to show innermost termination in the following.
| a2#(a,x) | → | f#(x,a2(a1(a),a)) | (5) |
| a2#(a,x) | → | a2#(a1(a),a) | (6) |
| f#(a1(x0),y1) | → | a2#(x0,y1) | (7) |
The dependency pairs are split into 1 component.
| f#(a1(x0),y1) | → | a2#(x0,y1) | (7) |
| a2#(a,x) | → | f#(x,a2(a1(a),a)) | (5) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
| a2(a,x0) |
| prec(f#) | = | 2 | weight(f#) | = | 2 | ||||
| prec(a1) | = | 3 | weight(a1) | = | 6 | ||||
| prec(a2#) | = | 1 | weight(a2#) | = | 5 | ||||
| prec(a2) | = | 0 | weight(a2) | = | 2 | ||||
| prec(a) | = | 0 | weight(a) | = | 7 |
| π(f#) | = | [1,2] |
| π(a1) | = | [] |
| π(a2#) | = | [2] |
| π(a2) | = | [] |
| π(a) | = | [] |
| f#(a1(x0),y1) | → | a2#(x0,y1) | (7) |
| a2#(a,x) | → | f#(x,a2(a1(a),a)) | (5) |
There are no pairs anymore.