The rewrite relation of the following TRS is considered.
a(f,a(f,x)) | → | a(x,g) | (1) |
a(x,g) | → | a(f,a(g,a(f,x))) | (2) |
a#(f,a(f,x)) | → | a#(x,g) | (3) |
a#(x,g) | → | a#(f,a(g,a(f,x))) | (4) |
a#(x,g) | → | a#(g,a(f,x)) | (5) |
a#(x,g) | → | a#(f,x) | (6) |
The dependency pairs are split into 1 component.
a#(x,g) | → | a#(f,a(g,a(f,x))) | (4) |
a#(f,a(f,x)) | → | a#(x,g) | (3) |
a#(x,g) | → | a#(f,x) | (6) |
a#(a(f,x0),g) | → | a#(f,a(g,a(x0,g))) | (7) |
a#(g,g) | → | a#(f,a(g,a(f,a(g,a(f,f))))) | (8) |
The dependency pairs are split into 1 component.
a#(x,g) | → | a#(f,x) | (6) |
a#(f,a(f,x)) | → | a#(x,g) | (3) |
a#(a(f,x0),g) | → | a#(f,a(g,a(x0,g))) | (7) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[a(x1, x2)] | = | 0 |
[f] | = | 0 |
[a#(x1, x2)] | = | 0 |
[g] | = | 1 |
a#01(x,g) | → | a#00(f,x) | (9) |
a#00(f,a00(f,x)) | → | a#01(x,g) | (10) |
a#00(f,a01(f,x)) | → | a#11(x,g) | (11) |
a#11(x,g) | → | a#01(f,x) | (12) |
a#01(a00(f,x0),g) | → | a#00(f,a10(g,a01(x0,g))) | (13) |
a#01(a01(f,x0),g) | → | a#00(f,a10(g,a11(x0,g))) | (14) |
a00(f,a00(f,x)) | → | a01(x,g) | (15) |
a00(f,a01(f,x)) | → | a11(x,g) | (16) |
a01(x,g) | → | a00(f,a10(g,a00(f,x))) | (17) |
a11(x,g) | → | a00(f,a10(g,a01(f,x))) | (18) |
The dependency pairs are split into 1 component.
a#00(f,a00(f,x)) | → | a#01(x,g) | (10) |
a#01(x,g) | → | a#00(f,x) | (9) |
a#00(f,a01(f,x)) | → | a#11(x,g) | (11) |
a#11(x,g) | → | a#01(f,x) | (12) |
[a#00(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[f] | = | 1 |
[a00(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[a#01(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[g] | = | 1 |
[a01(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[a#11(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
a#00(f,a00(f,x)) | → | a#01(x,g) | (10) |
a#00(f,a01(f,x)) | → | a#11(x,g) | (11) |
The dependency pairs are split into 0 components.