The rewrite relation of the following TRS is considered.
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
quot(0,s(y)) | → | 0 | (3) |
quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (4) |
plus(0,y) | → | y | (5) |
plus(s(x),y) | → | s(plus(x,y)) | (6) |
plus(minus(x,s(0)),minus(y,s(s(z)))) | → | plus(minus(y,s(s(z))),minus(x,s(0))) | (7) |
plus#(s(x),y) | → | plus#(x,y) | (8) |
quot#(s(x),s(y)) | → | minus#(x,y) | (9) |
plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (10) |
minus#(s(x),s(y)) | → | minus#(x,y) | (11) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (12) |
The dependency pairs are split into 3 components.
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (12) |
[s(x1)] | = | x1 + 2 |
[minus(x1, x2)] | = | x1 + 1 |
[plus#(x1, x2)] | = | 0 |
[0] | = | 1 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (12) |
The dependency pairs are split into 0 components.
minus#(s(x),s(y)) | → | minus#(x,y) | (11) |
[s(x1)] | = | x1 + 2 |
[minus(x1, x2)] | = | x1 + 1 |
[plus#(x1, x2)] | = | 0 |
[0] | = | 1 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | x1 + x2 + 0 |
[plus(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
minus#(s(x),s(y)) | → | minus#(x,y) | (11) |
The dependency pairs are split into 0 components.
plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (10) |
plus#(s(x),y) | → | plus#(x,y) | (8) |
[s(x1)] | = | x1 + 2 |
[minus(x1, x2)] | = | x1 + x2 + 1 |
[plus#(x1, x2)] | = | x1 + x2 + 0 |
[0] | = | 0 |
[quot(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[plus(x1, x2)] | = | 0 |
[quot#(x1, x2)] | = | x1 + 0 |
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
plus#(s(x),y) | → | plus#(x,y) | (8) |
The dependency pairs are split into 1 component.
plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (10) |
[s(x1)] | = |
|
|||||||||||||||||||
[minus(x1, x2)] | = |
|
|||||||||||||||||||
[plus#(x1, x2)] | = |
|
|||||||||||||||||||
[0] | = |
|
|||||||||||||||||||
[quot(x1, x2)] | = |
|
|||||||||||||||||||
[minus#(x1, x2)] | = |
|
|||||||||||||||||||
[plus(x1, x2)] | = |
|
|||||||||||||||||||
[quot#(x1, x2)] | = |
|
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (10) |
The dependency pairs are split into 0 components.