The rewrite relation of the following TRS is considered.
f(0) | → | true | (1) |
f(1) | → | false | (2) |
f(s(x)) | → | f(x) | (3) |
if(true,s(x),s(y)) | → | s(x) | (4) |
if(false,s(x),s(y)) | → | s(y) | (5) |
g(x,c(y)) | → | c(g(x,y)) | (6) |
g(x,c(y)) | → | g(x,if(f(x),c(g(s(x),y)),c(y))) | (7) |
g#(x,c(y)) | → | g#(x,if(f(x),c(g(s(x),y)),c(y))) | (8) |
f#(s(x)) | → | f#(x) | (9) |
g#(x,c(y)) | → | g#(s(x),y) | (10) |
g#(x,c(y)) | → | if#(f(x),c(g(s(x),y)),c(y)) | (11) |
g#(x,c(y)) | → | g#(x,y) | (12) |
g#(x,c(y)) | → | f#(x) | (13) |
The dependency pairs are split into 2 components.
g#(x,c(y)) | → | g#(x,y) | (12) |
g#(x,c(y)) | → | g#(s(x),y) | (10) |
[1] | = | 0 |
[s(x1)] | = | 1 |
[false] | = | 0 |
[c(x1)] | = | x1 + 1 |
[true] | = | 0 |
[f(x1)] | = | 0 |
[0] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | x2 + 0 |
[if#(x1, x2, x3)] | = | 0 |
[g(x1, x2)] | = | 0 |
g#(x,c(y)) | → | g#(x,y) | (12) |
g#(x,c(y)) | → | g#(s(x),y) | (10) |
The dependency pairs are split into 0 components.
f#(s(x)) | → | f#(x) | (9) |
[1] | = | 0 |
[s(x1)] | = | x1 + 1 |
[false] | = | 0 |
[c(x1)] | = | 1 |
[true] | = | 0 |
[f(x1)] | = | 0 |
[0] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[f#(x1)] | = | x1 + 0 |
[g#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[g(x1, x2)] | = | 0 |
f#(s(x)) | → | f#(x) | (9) |
The dependency pairs are split into 0 components.