The rewrite relation of the following TRS is considered.
le(0,y) | → | true | (1) |
le(s(x),0) | → | false | (2) |
le(s(x),s(y)) | → | le(x,y) | (3) |
pred(s(x)) | → | x | (4) |
minus(x,0) | → | x | (5) |
minus(x,s(y)) | → | pred(minus(x,y)) | (6) |
gcd(0,y) | → | y | (7) |
gcd(s(x),0) | → | s(x) | (8) |
gcd(s(x),s(y)) | → | if_gcd(le(y,x),s(x),s(y)) | (9) |
if_gcd(true,s(x),s(y)) | → | gcd(minus(x,y),s(y)) | (10) |
if_gcd(false,s(x),s(y)) | → | gcd(minus(y,x),s(x)) | (11) |
minus#(x,s(y)) | → | minus#(x,y) | (12) |
if_gcd#(false,s(x),s(y)) | → | minus#(y,x) | (13) |
le#(s(x),s(y)) | → | le#(x,y) | (14) |
if_gcd#(true,s(x),s(y)) | → | gcd#(minus(x,y),s(y)) | (15) |
if_gcd#(false,s(x),s(y)) | → | gcd#(minus(y,x),s(x)) | (16) |
gcd#(s(x),s(y)) | → | if_gcd#(le(y,x),s(x),s(y)) | (17) |
minus#(x,s(y)) | → | pred#(minus(x,y)) | (18) |
if_gcd#(true,s(x),s(y)) | → | minus#(x,y) | (19) |
gcd#(s(x),s(y)) | → | le#(y,x) | (20) |
The dependency pairs are split into 3 components.
gcd#(s(x),s(y)) | → | if_gcd#(le(y,x),s(x),s(y)) | (17) |
if_gcd#(false,s(x),s(y)) | → | gcd#(minus(y,x),s(x)) | (16) |
if_gcd#(true,s(x),s(y)) | → | gcd#(minus(x,y),s(y)) | (15) |
[le(x1, x2)] | = | x1 + x2 + 1 |
[s(x1)] | = | x1 + 3 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 1 |
[gcd(x1, x2)] | = | 0 |
[false] | = | 6 |
[true] | = | 3 |
[pred(x1)] | = | x1 + 0 |
[0] | = | 1 |
[minus#(x1, x2)] | = | 0 |
[pred#(x1)] | = | 0 |
[if_gcd(x1, x2, x3)] | = | 0 |
[if_gcd#(x1, x2, x3)] | = | x2 + x3 + 1 |
[gcd#(x1, x2)] | = | x1 + x2 + 2 |
pred(s(x)) | → | x | (4) |
minus(x,0) | → | x | (5) |
minus(x,s(y)) | → | pred(minus(x,y)) | (6) |
gcd#(s(x),s(y)) | → | if_gcd#(le(y,x),s(x),s(y)) | (17) |
if_gcd#(false,s(x),s(y)) | → | gcd#(minus(y,x),s(x)) | (16) |
if_gcd#(true,s(x),s(y)) | → | gcd#(minus(x,y),s(y)) | (15) |
The dependency pairs are split into 0 components.
le#(s(x),s(y)) | → | le#(x,y) | (14) |
[le(x1, x2)] | = | x1 + x2 + 1 |
[s(x1)] | = | x1 + 1 |
[le#(x1, x2)] | = | x2 + 0 |
[minus(x1, x2)] | = | x1 + 1 |
[gcd(x1, x2)] | = | 0 |
[false] | = | 4 |
[true] | = | 3 |
[pred(x1)] | = | x1 + 0 |
[0] | = | 1 |
[minus#(x1, x2)] | = | 0 |
[pred#(x1)] | = | 0 |
[if_gcd(x1, x2, x3)] | = | 0 |
[if_gcd#(x1, x2, x3)] | = | 1 |
[gcd#(x1, x2)] | = | x1 + 2 |
pred(s(x)) | → | x | (4) |
minus(x,0) | → | x | (5) |
minus(x,s(y)) | → | pred(minus(x,y)) | (6) |
le#(s(x),s(y)) | → | le#(x,y) | (14) |
The dependency pairs are split into 0 components.
minus#(x,s(y)) | → | minus#(x,y) | (12) |
[le(x1, x2)] | = | x1 + x2 + 1 |
[s(x1)] | = | x1 + 1 |
[le#(x1, x2)] | = | 0 |
[minus(x1, x2)] | = | x1 + 1 |
[gcd(x1, x2)] | = | 0 |
[false] | = | 4 |
[true] | = | 3 |
[pred(x1)] | = | x1 + 0 |
[0] | = | 1 |
[minus#(x1, x2)] | = | x2 + 0 |
[pred#(x1)] | = | 0 |
[if_gcd(x1, x2, x3)] | = | 0 |
[if_gcd#(x1, x2, x3)] | = | 1 |
[gcd#(x1, x2)] | = | x1 + 2 |
pred(s(x)) | → | x | (4) |
minus(x,0) | → | x | (5) |
minus(x,s(y)) | → | pred(minus(x,y)) | (6) |
minus#(x,s(y)) | → | minus#(x,y) | (12) |
The dependency pairs are split into 0 components.