The rewrite relation of the following TRS is considered.
| plus(x,0) | → | x | (1) |
| plus(0,y) | → | y | (2) |
| plus(s(x),y) | → | s(plus(x,y)) | (3) |
| times(0,y) | → | 0 | (4) |
| times(s(0),y) | → | y | (5) |
| times(s(x),y) | → | plus(y,times(x,y)) | (6) |
| div(0,y) | → | 0 | (7) |
| div(x,y) | → | quot(x,y,y) | (8) |
| quot(0,s(y),z) | → | 0 | (9) |
| quot(s(x),s(y),z) | → | quot(x,y,z) | (10) |
| quot(x,0,s(z)) | → | s(div(x,s(z))) | (11) |
| div(div(x,y),z) | → | div(x,times(y,z)) | (12) |
| eq(0,0) | → | true | (13) |
| eq(s(x),0) | → | false | (14) |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| divides(y,x) | → | eq(x,times(div(x,y),y)) | (17) |
| prime(s(s(x))) | → | pr(s(s(x)),s(x)) | (18) |
| pr(x,s(0)) | → | true | (19) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (20) |
| if(true,x,y) | → | false | (21) |
| if(false,x,y) | → | pr(x,y) | (22) |
| times#(s(x),y) | → | times#(x,y) | (23) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (24) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (25) |
| if#(false,x,y) | → | pr#(x,y) | (26) |
| divides#(y,x) | → | times#(div(x,y),y) | (27) |
| divides#(y,x) | → | div#(x,y) | (28) |
| plus#(s(x),y) | → | plus#(x,y) | (29) |
| pr#(x,s(s(y))) | → | divides#(s(s(y)),x) | (30) |
| divides#(y,x) | → | eq#(x,times(div(x,y),y)) | (31) |
| div#(div(x,y),z) | → | times#(y,z) | (32) |
| prime#(s(s(x))) | → | pr#(s(s(x)),s(x)) | (33) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (34) |
| times#(s(x),y) | → | plus#(y,times(x,y)) | (35) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (36) |
| div#(x,y) | → | quot#(x,y,y) | (37) |
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (38) |
The dependency pairs are split into 5 components.
| if#(false,x,y) | → | pr#(x,y) | (26) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (24) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 2 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | x2 + 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x2 + 2 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 3 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 0 |
| [times(x1, x2)] | = | x1 + 1 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 4 |
| [if#(x1, x2, x3)] | = | x3 + 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x2 + 3 |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| eq(s(x),0) | → | false | (14) |
| eq(0,0) | → | true | (13) |
| if#(false,x,y) | → | pr#(x,y) | (26) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (24) |
The dependency pairs are split into 0 components.
| eq#(s(x),s(y)) | → | eq#(x,y) | (25) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 26287 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x2 + 52572 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | x1 + x2 + 0 |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 52573 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 26285 |
| [times(x1, x2)] | = | x1 + 1 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 26289 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x2 + 52573 |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| eq(s(x),0) | → | false | (14) |
| eq(0,0) | → | true | (13) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (25) |
The dependency pairs are split into 0 components.
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (38) |
| div#(x,y) | → | quot#(x,y,y) | (37) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (36) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (34) |
| [div#(x1, x2)] | = | x1 + 0 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 9727 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 9727 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 0 |
| [times(x1, x2)] | = | 9728 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 9729 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | x1 + 0 |
| [divides(x1, x2)] | = | x2 + 9728 |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| eq(s(x),0) | → | false | (14) |
| eq(0,0) | → | true | (13) |
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (38) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (36) |
The dependency pairs are split into 1 component.
| div#(x,y) | → | quot#(x,y,y) | (37) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (34) |
| [div#(x1, x2)] | = | max(x2 + 21240, 0) |
| [s(x1)] | = | 0 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | max(0) |
| [pr#(x1, x2)] | = | max(0) |
| [eq(x1, x2)] | = | max(0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(0) |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(0) |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | max(0) |
| [0] | = | 21239 |
| [if(x1, x2, x3)] | = | max(0) |
| [quot(x1, x2, x3)] | = | max(0) |
| [times(x1, x2)] | = | max(0) |
| [pr(x1, x2)] | = | max(0) |
| [divides#(x1, x2)] | = | max(0) |
| [plus(x1, x2)] | = | max(0) |
| [if#(x1, x2, x3)] | = | max(0) |
| [quot#(x1, x2, x3)] | = | max(x2 + 1, 0) |
| [divides(x1, x2)] | = | max(0) |
| div#(x,y) | → | quot#(x,y,y) | (37) |
The dependency pairs are split into 0 components.
| times#(s(x),y) | → | times#(x,y) | (23) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 21240 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 2 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | x1 + 0 |
| [0] | = | 21241 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 0 |
| [times(x1, x2)] | = | 21240 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 21241 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x2 + 21240 |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| eq(s(x),0) | → | false | (14) |
| eq(0,0) | → | true | (13) |
| times#(s(x),y) | → | times#(x,y) | (23) |
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(x,y) | (29) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 3 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | x1 + 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 21239 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 21241 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 0 |
| [times(x1, x2)] | = | 21240 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 21241 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x2 + 21240 |
| eq(0,s(y)) | → | false | (15) |
| eq(s(x),s(y)) | → | eq(x,y) | (16) |
| eq(s(x),0) | → | false | (14) |
| eq(0,0) | → | true | (13) |
| plus#(s(x),y) | → | plus#(x,y) | (29) |
The dependency pairs are split into 0 components.