The rewrite relation of the following TRS is considered.
| p(s(x)) | → | x | (1) |
| plus(x,0) | → | x | (2) |
| plus(0,y) | → | y | (3) |
| plus(s(x),y) | → | s(plus(x,y)) | (4) |
| plus(s(x),y) | → | s(plus(p(s(x)),y)) | (5) |
| plus(x,s(y)) | → | s(plus(x,p(s(y)))) | (6) |
| times(0,y) | → | 0 | (7) |
| times(s(0),y) | → | y | (8) |
| times(s(x),y) | → | plus(y,times(x,y)) | (9) |
| div(0,y) | → | 0 | (10) |
| div(x,y) | → | quot(x,y,y) | (11) |
| quot(0,s(y),z) | → | 0 | (12) |
| quot(s(x),s(y),z) | → | quot(x,y,z) | (13) |
| quot(x,0,s(z)) | → | s(div(x,s(z))) | (14) |
| div(div(x,y),z) | → | div(x,times(y,z)) | (15) |
| eq(0,0) | → | true | (16) |
| eq(s(x),0) | → | false | (17) |
| eq(0,s(y)) | → | false | (18) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| divides(y,x) | → | eq(x,times(div(x,y),y)) | (20) |
| prime(s(s(x))) | → | pr(s(s(x)),s(x)) | (21) |
| pr(x,s(0)) | → | true | (22) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (23) |
| if(true,x,y) | → | false | (24) |
| if(false,x,y) | → | pr(x,y) | (25) |
| plus#(x,s(y)) | → | p#(s(y)) | (26) |
| div#(x,y) | → | quot#(x,y,y) | (27) |
| divides#(y,x) | → | div#(x,y) | (28) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (29) |
| divides#(y,x) | → | eq#(x,times(div(x,y),y)) | (30) |
| divides#(y,x) | → | times#(div(x,y),y) | (31) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (32) |
| plus#(s(x),y) | → | plus#(x,y) | (33) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (34) |
| if#(false,x,y) | → | pr#(x,y) | (35) |
| times#(s(x),y) | → | times#(x,y) | (36) |
| prime#(s(s(x))) | → | pr#(s(s(x)),s(x)) | (37) |
| div#(div(x,y),z) | → | times#(y,z) | (38) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (39) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (40) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (41) |
| pr#(x,s(s(y))) | → | divides#(s(s(y)),x) | (42) |
| plus#(s(x),y) | → | p#(s(x)) | (43) |
| times#(s(x),y) | → | plus#(y,times(x,y)) | (44) |
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (45) |
The dependency pairs are split into 5 components.
| if#(false,x,y) | → | pr#(x,y) | (35) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (34) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 3002 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | x2 + 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 1 |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 3000 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 2 |
| [times(x1, x2)] | = | 2999 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 29285 |
| [if#(x1, x2, x3)] | = | x3 + 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x1 + 2999 |
| eq(0,s(y)) | → | false | (18) |
| eq(0,0) | → | true | (16) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| eq(s(x),0) | → | false | (17) |
| if#(false,x,y) | → | pr#(x,y) | (35) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (34) |
The dependency pairs are split into 0 components.
| eq#(s(x),s(y)) | → | eq#(x,y) | (39) |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 1091 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 1 |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | x1 + 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1912 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 1089 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 2 |
| [times(x1, x2)] | = | 1088 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 27374 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x1 + 1088 |
| eq(0,s(y)) | → | false | (18) |
| eq(0,0) | → | true | (16) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| eq(s(x),0) | → | false | (17) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (39) |
The dependency pairs are split into 0 components.
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (45) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (40) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (29) |
| div#(x,y) | → | quot#(x,y,y) | (27) |
| [div#(x1, x2)] | = | x1 + 0 |
| [s(x1)] | = | x1 + 1091 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 1 |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1912 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 1089 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 2 |
| [times(x1, x2)] | = | 23 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 26309 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | x1 + 0 |
| [divides(x1, x2)] | = | x1 + 23 |
| eq(0,s(y)) | → | false | (18) |
| eq(0,0) | → | true | (16) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| eq(s(x),0) | → | false | (17) |
| div#(div(x,y),z) | → | div#(x,times(y,z)) | (45) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (40) |
The dependency pairs are split into 1 component.
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (29) |
| div#(x,y) | → | quot#(x,y,y) | (27) |
| [div#(x1, x2)] | = | max(x2 + 0, 0) |
| [s(x1)] | = | 0 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | max(0) |
| [pr#(x1, x2)] | = | max(0) |
| [eq(x1, x2)] | = | max(0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(0) |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(0) |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 0 |
| [times#(x1, x2)] | = | max(0) |
| [0] | = | 1 |
| [if(x1, x2, x3)] | = | max(0) |
| [quot(x1, x2, x3)] | = | max(0) |
| [times(x1, x2)] | = | max(0) |
| [pr(x1, x2)] | = | max(0) |
| [divides#(x1, x2)] | = | max(0) |
| [plus(x1, x2)] | = | max(0) |
| [if#(x1, x2, x3)] | = | max(0) |
| [quot#(x1, x2, x3)] | = | max(x2 + 0, 0) |
| [divides(x1, x2)] | = | max(0) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (29) |
The dependency pairs are split into 0 components.
| times#(s(x),y) | → | times#(x,y) | (36) |
| [div#(x1, x2)] | = | 1 |
| [s(x1)] | = | x1 + 16912 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 1 |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1 |
| [times#(x1, x2)] | = | x1 + 0 |
| [0] | = | 16910 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 2 |
| [times(x1, x2)] | = | x2 + 16909 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 18588 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x1 + 16909 |
| eq(0,s(y)) | → | false | (18) |
| eq(0,0) | → | true | (16) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| eq(s(x),0) | → | false | (17) |
| times#(s(x),y) | → | times#(x,y) | (36) |
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (32) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (41) |
| plus#(s(x),y) | → | plus#(x,y) | (33) |
| [div#(x1, x2)] | = | 1 |
| [s(x1)] | = | x1 + 30405 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | x1 + x2 + 0 |
| [pr#(x1, x2)] | = | 0 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 0 |
| [div(x1, x2)] | = | x1 + x2 + 29534 |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 29536 |
| [if(x1, x2, x3)] | = | 0 |
| [quot(x1, x2, x3)] | = | x2 + x3 + 30402 |
| [times(x1, x2)] | = | x2 + 29535 |
| [pr(x1, x2)] | = | 0 |
| [divides#(x1, x2)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 18588 |
| [if#(x1, x2, x3)] | = | 1 |
| [quot#(x1, x2, x3)] | = | 0 |
| [divides(x1, x2)] | = | x1 + 29535 |
| eq(0,s(y)) | → | false | (18) |
| p(s(x)) | → | x | (1) |
| eq(0,0) | → | true | (16) |
| eq(s(x),s(y)) | → | eq(x,y) | (19) |
| eq(s(x),0) | → | false | (17) |
| plus#(s(x),y) | → | plus#(x,y) | (33) |
The dependency pairs are split into 1 component.
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (32) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (41) |
| π(pr#) | = | 2 |
| π(eq) | = | 1 |
| prec(div#) | = | 0 | status(div#) | = | [1, 2] | list-extension(div#) | = | Lex | ||
| prec(s) | = | 1 | status(s) | = | [] | list-extension(s) | = | Lex | ||
| prec(prime) | = | 0 | status(prime) | = | [] | list-extension(prime) | = | Lex | ||
| prec(plus#) | = | 0 | status(plus#) | = | [1] | list-extension(plus#) | = | Lex | ||
| prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
| prec(div) | = | 0 | status(div) | = | [2, 1] | list-extension(div) | = | Lex | ||
| prec(p#) | = | 0 | status(p#) | = | [] | list-extension(p#) | = | Lex | ||
| prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex | ||
| prec(eq#) | = | 0 | status(eq#) | = | [1, 2] | list-extension(eq#) | = | Lex | ||
| prec(prime#) | = | 0 | status(prime#) | = | [] | list-extension(prime#) | = | Lex | ||
| prec(p) | = | 0 | status(p) | = | [] | list-extension(p) | = | Lex | ||
| prec(times#) | = | 0 | status(times#) | = | [1, 2] | list-extension(times#) | = | Lex | ||
| prec(0) | = | 0 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(if) | = | 0 | status(if) | = | [3, 2, 1] | list-extension(if) | = | Lex | ||
| prec(quot) | = | 0 | status(quot) | = | [3, 2, 1] | list-extension(quot) | = | Lex | ||
| prec(times) | = | 0 | status(times) | = | [1, 2] | list-extension(times) | = | Lex | ||
| prec(pr) | = | 0 | status(pr) | = | [1, 2] | list-extension(pr) | = | Lex | ||
| prec(divides#) | = | 0 | status(divides#) | = | [2, 1] | list-extension(divides#) | = | Lex | ||
| prec(plus) | = | 0 | status(plus) | = | [1, 2] | list-extension(plus) | = | Lex | ||
| prec(if#) | = | 0 | status(if#) | = | [3, 2, 1] | list-extension(if#) | = | Lex | ||
| prec(quot#) | = | 0 | status(quot#) | = | [3, 2, 1] | list-extension(quot#) | = | Lex | ||
| prec(divides) | = | 0 | status(divides) | = | [1, 2] | list-extension(divides) | = | Lex |
| [div#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [s(x1)] | = | x1 + 39 |
| [prime(x1)] | = | 1 |
| [plus#(x1, x2)] | = | max(x1 + 0, 0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [p#(x1)] | = | 1 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [prime#(x1)] | = | 1 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [0] | = | 0 |
| [if(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [times(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [pr(x1, x2)] | = | x1 + x2 + 1 |
| [divides#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [plus(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [if#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot#(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [divides(x1, x2)] | = | x1 + x2 + 1 |
| p(s(x)) | → | x | (1) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (32) |
The dependency pairs are split into 1 component.
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (41) |
| π(pr#) | = | 2 |
| π(eq) | = | 1 |
| prec(div#) | = | 0 | status(div#) | = | [1, 2] | list-extension(div#) | = | Lex | ||
| prec(s) | = | 1 | status(s) | = | [] | list-extension(s) | = | Lex | ||
| prec(prime) | = | 0 | status(prime) | = | [] | list-extension(prime) | = | Lex | ||
| prec(plus#) | = | 2 | status(plus#) | = | [1, 2] | list-extension(plus#) | = | Lex | ||
| prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
| prec(div) | = | 0 | status(div) | = | [2, 1] | list-extension(div) | = | Lex | ||
| prec(p#) | = | 0 | status(p#) | = | [] | list-extension(p#) | = | Lex | ||
| prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex | ||
| prec(eq#) | = | 0 | status(eq#) | = | [1, 2] | list-extension(eq#) | = | Lex | ||
| prec(prime#) | = | 0 | status(prime#) | = | [] | list-extension(prime#) | = | Lex | ||
| prec(p) | = | 0 | status(p) | = | [] | list-extension(p) | = | Lex | ||
| prec(times#) | = | 0 | status(times#) | = | [1, 2] | list-extension(times#) | = | Lex | ||
| prec(0) | = | 0 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(if) | = | 0 | status(if) | = | [3, 2, 1] | list-extension(if) | = | Lex | ||
| prec(quot) | = | 0 | status(quot) | = | [3, 2, 1] | list-extension(quot) | = | Lex | ||
| prec(times) | = | 0 | status(times) | = | [1, 2] | list-extension(times) | = | Lex | ||
| prec(pr) | = | 0 | status(pr) | = | [1, 2] | list-extension(pr) | = | Lex | ||
| prec(divides#) | = | 0 | status(divides#) | = | [2, 1] | list-extension(divides#) | = | Lex | ||
| prec(plus) | = | 0 | status(plus) | = | [1, 2] | list-extension(plus) | = | Lex | ||
| prec(if#) | = | 0 | status(if#) | = | [3, 2, 1] | list-extension(if#) | = | Lex | ||
| prec(quot#) | = | 0 | status(quot#) | = | [3, 2, 1] | list-extension(quot#) | = | Lex | ||
| prec(divides) | = | 0 | status(divides) | = | [1, 2] | list-extension(divides) | = | Lex |
| [div#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 1 |
| [plus#(x1, x2)] | = | max(x1 + 0, x2 + 7720, 0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [p#(x1)] | = | 1 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [prime#(x1)] | = | 1 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [0] | = | 0 |
| [if(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [times(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [pr(x1, x2)] | = | x1 + x2 + 1 |
| [divides#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [plus(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [if#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot#(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [divides(x1, x2)] | = | x1 + x2 + 1 |
| p(s(x)) | → | x | (1) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (41) |
The dependency pairs are split into 0 components.