The rewrite relation of the following TRS is considered.
| p(0) | → | 0 | (1) |
| p(s(x)) | → | x | (2) |
| plus(x,0) | → | x | (3) |
| plus(0,y) | → | y | (4) |
| plus(s(x),y) | → | s(plus(x,y)) | (5) |
| plus(s(x),y) | → | s(plus(p(s(x)),y)) | (6) |
| plus(x,s(y)) | → | s(plus(x,p(s(y)))) | (7) |
| times(0,y) | → | 0 | (8) |
| times(s(0),y) | → | y | (9) |
| times(s(x),y) | → | plus(y,times(x,y)) | (10) |
| div(0,y) | → | 0 | (11) |
| div(x,y) | → | quot(x,y,y) | (12) |
| quot(zero(y),s(y),z) | → | 0 | (13) |
| quot(s(x),s(y),z) | → | quot(x,y,z) | (14) |
| quot(x,0,s(z)) | → | s(div(x,s(z))) | (15) |
| div(div(x,y),z) | → | div(x,times(zero(y),z)) | (16) |
| eq(0,0) | → | true | (17) |
| eq(s(x),0) | → | false | (18) |
| eq(0,s(y)) | → | false | (19) |
| eq(s(x),s(y)) | → | eq(x,y) | (20) |
| divides(y,x) | → | eq(x,times(div(x,y),y)) | (21) |
| prime(s(s(x))) | → | pr(s(s(x)),s(x)) | (22) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| if(true,x,y) | → | false | (25) |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| zero(times(x,x)) | → | x | (29) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| plus#(s(x),y) | → | p#(s(x)) | (32) |
| zero#(s(x)) | → | if#(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (33) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (34) |
| zero#(s(x)) | → | zero#(0) | (35) |
| zero#(s(x)) | → | zero#(0) | (35) |
| div#(div(x,y),z) | → | div#(x,times(zero(y),z)) | (36) |
| divides#(y,x) | → | div#(x,y) | (37) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (38) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (39) |
| div#(div(x,y),z) | → | times#(zero(y),z) | (40) |
| if#(false,x,y) | → | pr#(x,y) | (41) |
| zero#(s(x)) | → | eq#(x,s(0)) | (42) |
| zero#(s(x)) | → | plus#(0,zero(0)) | (43) |
| div#(x,y) | → | quot#(x,y,y) | (44) |
| divides#(y,x) | → | times#(div(x,y),y) | (45) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (46) |
| times#(s(x),y) | → | times#(x,y) | (47) |
| prime#(s(s(x))) | → | pr#(s(s(x)),s(x)) | (48) |
| div#(div(x,y),z) | → | zero#(y) | (49) |
| divides#(y,x) | → | eq#(x,times(div(x,y),y)) | (50) |
| times#(s(x),y) | → | plus#(y,times(x,y)) | (51) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (52) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (53) |
| zero#(s(x)) | → | plus#(zero(0),0) | (54) |
| plus#(x,s(y)) | → | p#(s(y)) | (55) |
| pr#(x,s(s(y))) | → | divides#(s(s(y)),x) | (56) |
| plus#(s(x),y) | → | plus#(x,y) | (57) |
The dependency pairs are split into 4 components.
| pr#(x,s(s(y))) | → | divides#(s(s(y)),x) | (56) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (38) |
| divides#(y,x) | → | div#(x,y) | (37) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (52) |
| div#(div(x,y),z) | → | div#(x,times(zero(y),z)) | (36) |
| div#(div(x,y),z) | → | zero#(y) | (49) |
| zero#(s(x)) | → | if#(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (33) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (46) |
| div#(x,y) | → | quot#(x,y,y) | (44) |
| if#(false,x,y) | → | pr#(x,y) | (41) |
| [zero(x1)] | = | x1 + 2 |
| [div#(x1, x2)] | = | x1 + 0 |
| [s(x1)] | = | x1 + 0 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | x1 + 2 |
| [eq(x1, x2)] | = | x2 + 0 |
| [false] | = | 2 |
| [div(x1, x2)] | = | x1 + x2 + 9515 |
| [p#(x1)] | = | 0 |
| [true] | = | 2 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [if(x1, x2, x3)] | = | 2 |
| [quot(x1, x2, x3)] | = | x3 + 9516 |
| [times(x1, x2)] | = | x1 + 9514 |
| [pr(x1, x2)] | = | 2 |
| [divides#(x1, x2)] | = | x2 + 1 |
| [plus(x1, x2)] | = | x1 + x2 + 9507 |
| [if#(x1, x2, x3)] | = | x2 + 2 |
| [quot#(x1, x2, x3)] | = | x1 + 0 |
| [zero#(x1)] | = | x1 + 9514 |
| [divides(x1, x2)] | = | x2 + 1673 |
| plus(0,y) | → | y | (4) |
| p(0) | → | 0 | (1) |
| plus(x,0) | → | x | (3) |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| plus(s(x),y) | → | s(plus(x,y)) | (5) |
| plus(x,s(y)) | → | s(plus(x,p(s(y)))) | (7) |
| if(true,x,y) | → | false | (25) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| plus(s(x),y) | → | s(plus(p(s(x)),y)) | (6) |
| zero(times(x,x)) | → | x | (29) |
| p(s(x)) | → | x | (2) |
| pr#(x,s(s(y))) | → | divides#(s(s(y)),x) | (56) |
| divides#(y,x) | → | div#(x,y) | (37) |
| div#(div(x,y),z) | → | div#(x,times(zero(y),z)) | (36) |
| div#(div(x,y),z) | → | zero#(y) | (49) |
| zero#(s(x)) | → | if#(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (33) |
The dependency pairs are split into 2 components.
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (46) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (38) |
| div#(x,y) | → | quot#(x,y,y) | (44) |
| [zero(x1)] | = | x1 + 1 |
| [div#(x1, x2)] | = | x1 + 0 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 2 |
| [eq(x1, x2)] | = | x2 + 0 |
| [false] | = | 2 |
| [div(x1, x2)] | = | x1 + x2 + 1 |
| [p#(x1)] | = | 0 |
| [true] | = | 2 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [if(x1, x2, x3)] | = | 2 |
| [quot(x1, x2, x3)] | = | x3 + 9516 |
| [times(x1, x2)] | = | x1 + x2 + 1 |
| [pr(x1, x2)] | = | 2 |
| [divides#(x1, x2)] | = | 1 |
| [plus(x1, x2)] | = | x1 + 15945 |
| [if#(x1, x2, x3)] | = | 2 |
| [quot#(x1, x2, x3)] | = | x1 + 0 |
| [zero#(x1)] | = | 9514 |
| [divides(x1, x2)] | = | x2 + 1 |
| plus(x,0) | → | x | (3) |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| if(true,x,y) | → | false | (25) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| zero(times(x,x)) | → | x | (29) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (38) |
The dependency pairs are split into 1 component.
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (46) |
| div#(x,y) | → | quot#(x,y,y) | (44) |
| [zero(x1)] | = | 0 |
| [div#(x1, x2)] | = | max(x2 + 2, 0) |
| [s(x1)] | = | 0 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | max(0) |
| [pr#(x1, x2)] | = | max(0) |
| [eq(x1, x2)] | = | max(0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(0) |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(0) |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 0 |
| [times#(x1, x2)] | = | max(0) |
| [0] | = | 3 |
| [if(x1, x2, x3)] | = | max(0) |
| [quot(x1, x2, x3)] | = | max(0) |
| [times(x1, x2)] | = | max(0) |
| [pr(x1, x2)] | = | max(0) |
| [divides#(x1, x2)] | = | max(0) |
| [plus(x1, x2)] | = | max(0) |
| [if#(x1, x2, x3)] | = | max(0) |
| [quot#(x1, x2, x3)] | = | max(x2 + 0, x3 + 1, 0) |
| [zero#(x1)] | = | 0 |
| [divides(x1, x2)] | = | max(0) |
| quot#(x,0,s(z)) | → | div#(x,s(z)) | (46) |
| div#(x,y) | → | quot#(x,y,y) | (44) |
The dependency pairs are split into 0 components.
| if#(false,x,y) | → | pr#(x,y) | (41) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (52) |
| [zero(x1)] | = | x1 + 0 |
| [div#(x1, x2)] | = | max(0) |
| [s(x1)] | = | x1 + 845 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | max(0) |
| [pr#(x1, x2)] | = | max(x2 + 3, 0) |
| [eq(x1, x2)] | = | max(0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(x1 + 847, 0) |
| [p#(x1)] | = | 0 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(0) |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | max(0) |
| [0] | = | 849 |
| [if(x1, x2, x3)] | = | max(x1 + 846, x2 + 848, x3 + 1437, 0) |
| [quot(x1, x2, x3)] | = | max(x1 + 848, x2 + 2, x3 + 1, 0) |
| [times(x1, x2)] | = | max(x1 + 35495, x2 + 1, 0) |
| [pr(x1, x2)] | = | max(x1 + 847, 0) |
| [divides#(x1, x2)] | = | max(0) |
| [plus(x1, x2)] | = | max(0) |
| [if#(x1, x2, x3)] | = | max(x1 + 1, x3 + 4, 0) |
| [quot#(x1, x2, x3)] | = | max(0) |
| [zero#(x1)] | = | 0 |
| [divides(x1, x2)] | = | max(x1 + 1, 0) |
| eq(s(x),0) | → | false | (18) |
| divides(y,x) | → | eq(x,times(div(x,y),y)) | (21) |
| eq(0,s(y)) | → | false | (19) |
| eq(0,0) | → | true | (17) |
| eq(s(x),s(y)) | → | eq(x,y) | (20) |
| if#(false,x,y) | → | pr#(x,y) | (41) |
| pr#(x,s(s(y))) | → | if#(divides(s(s(y)),x),x,s(y)) | (52) |
The dependency pairs are split into 0 components.
| times#(s(x),y) | → | times#(x,y) | (47) |
| [zero(x1)] | = | x1 + 12 |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 1 |
| [eq(x1, x2)] | = | x1 + x2 + 5 |
| [false] | = | 9 |
| [div(x1, x2)] | = | x1 + x2 + 0 |
| [p#(x1)] | = | 0 |
| [true] | = | 10 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1 |
| [times#(x1, x2)] | = | x1 + 0 |
| [0] | = | 2 |
| [if(x1, x2, x3)] | = | 13 |
| [quot(x1, x2, x3)] | = | x3 + 9517 |
| [times(x1, x2)] | = | x1 + 1 |
| [pr(x1, x2)] | = | 13 |
| [divides#(x1, x2)] | = | 1 |
| [plus(x1, x2)] | = | 26729 |
| [if#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2, x3)] | = | 0 |
| [zero#(x1)] | = | 9514 |
| [divides(x1, x2)] | = | x2 + 2 |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| if(true,x,y) | → | false | (25) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| zero(times(x,x)) | → | x | (29) |
| times#(s(x),y) | → | times#(x,y) | (47) |
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(x,y) | (57) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (39) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (53) |
| [zero(x1)] | = | x1 + 12 |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | x1 + 0 |
| [pr#(x1, x2)] | = | 1 |
| [eq(x1, x2)] | = | x1 + x2 + 0 |
| [false] | = | 9 |
| [div(x1, x2)] | = | x1 + x2 + 0 |
| [p#(x1)] | = | 0 |
| [true] | = | 3 |
| [eq#(x1, x2)] | = | 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [if(x1, x2, x3)] | = | 13 |
| [quot(x1, x2, x3)] | = | x3 + 1 |
| [times(x1, x2)] | = | x1 + 29639 |
| [pr(x1, x2)] | = | 13 |
| [divides#(x1, x2)] | = | 1 |
| [plus(x1, x2)] | = | 29641 |
| [if#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2, x3)] | = | 0 |
| [zero#(x1)] | = | 9514 |
| [divides(x1, x2)] | = | x2 + 11495 |
| p(0) | → | 0 | (1) |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| if(true,x,y) | → | false | (25) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| zero(times(x,x)) | → | x | (29) |
| p(s(x)) | → | x | (2) |
| plus#(s(x),y) | → | plus#(x,y) | (57) |
The dependency pairs are split into 1 component.
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (39) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (53) |
| π(div#) | = | 2 |
| π(pr#) | = | 1 |
| prec(zero) | = | 0 | status(zero) | = | [] | list-extension(zero) | = | Lex | ||
| prec(s) | = | 1 | status(s) | = | [] | list-extension(s) | = | Lex | ||
| prec(prime) | = | 0 | status(prime) | = | [] | list-extension(prime) | = | Lex | ||
| prec(plus#) | = | 0 | status(plus#) | = | [2] | list-extension(plus#) | = | Lex | ||
| prec(eq) | = | 0 | status(eq) | = | [2, 1] | list-extension(eq) | = | Lex | ||
| prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
| prec(div) | = | 0 | status(div) | = | [1, 2] | list-extension(div) | = | Lex | ||
| prec(p#) | = | 0 | status(p#) | = | [] | list-extension(p#) | = | Lex | ||
| prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex | ||
| prec(eq#) | = | 0 | status(eq#) | = | [1, 2] | list-extension(eq#) | = | Lex | ||
| prec(prime#) | = | 0 | status(prime#) | = | [] | list-extension(prime#) | = | Lex | ||
| prec(p) | = | 0 | status(p) | = | [] | list-extension(p) | = | Lex | ||
| prec(times#) | = | 0 | status(times#) | = | [] | list-extension(times#) | = | Lex | ||
| prec(0) | = | 0 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(if) | = | 0 | status(if) | = | [3, 2, 1] | list-extension(if) | = | Lex | ||
| prec(quot) | = | 0 | status(quot) | = | [2, 1, 3] | list-extension(quot) | = | Lex | ||
| prec(times) | = | 0 | status(times) | = | [1, 2] | list-extension(times) | = | Lex | ||
| prec(pr) | = | 0 | status(pr) | = | [1, 2] | list-extension(pr) | = | Lex | ||
| prec(divides#) | = | 0 | status(divides#) | = | [] | list-extension(divides#) | = | Lex | ||
| prec(plus) | = | 0 | status(plus) | = | [2, 1] | list-extension(plus) | = | Lex | ||
| prec(if#) | = | 0 | status(if#) | = | [3, 2, 1] | list-extension(if#) | = | Lex | ||
| prec(quot#) | = | 0 | status(quot#) | = | [3, 2, 1] | list-extension(quot#) | = | Lex | ||
| prec(zero#) | = | 0 | status(zero#) | = | [] | list-extension(zero#) | = | Lex | ||
| prec(divides) | = | 0 | status(divides) | = | [1, 2] | list-extension(divides) | = | Lex |
| [zero(x1)] | = | 1 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 1 |
| [plus#(x1, x2)] | = | max(x2 + 0, 0) |
| [eq(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [p#(x1)] | = | 1 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [prime#(x1)] | = | 1 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | max(x2 + 1, 0) |
| [0] | = | 7758 |
| [if(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [quot(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [times(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [pr(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [divides#(x1, x2)] | = | x2 + 1 |
| [plus(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [if#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [zero#(x1)] | = | 1 |
| [divides(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| p(0) | → | 0 | (1) |
| p(s(x)) | → | x | (2) |
| plus#(x,s(y)) | → | plus#(x,p(s(y))) | (39) |
The dependency pairs are split into 1 component.
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (53) |
| π(div#) | = | 2 |
| π(pr#) | = | 1 |
| prec(zero) | = | 0 | status(zero) | = | [] | list-extension(zero) | = | Lex | ||
| prec(s) | = | 1 | status(s) | = | [] | list-extension(s) | = | Lex | ||
| prec(prime) | = | 0 | status(prime) | = | [] | list-extension(prime) | = | Lex | ||
| prec(plus#) | = | 2 | status(plus#) | = | [2, 1] | list-extension(plus#) | = | Lex | ||
| prec(eq) | = | 0 | status(eq) | = | [2, 1] | list-extension(eq) | = | Lex | ||
| prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
| prec(div) | = | 0 | status(div) | = | [1, 2] | list-extension(div) | = | Lex | ||
| prec(p#) | = | 0 | status(p#) | = | [] | list-extension(p#) | = | Lex | ||
| prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex | ||
| prec(eq#) | = | 0 | status(eq#) | = | [1, 2] | list-extension(eq#) | = | Lex | ||
| prec(prime#) | = | 0 | status(prime#) | = | [] | list-extension(prime#) | = | Lex | ||
| prec(p) | = | 0 | status(p) | = | [] | list-extension(p) | = | Lex | ||
| prec(times#) | = | 0 | status(times#) | = | [] | list-extension(times#) | = | Lex | ||
| prec(0) | = | 0 | status(0) | = | [] | list-extension(0) | = | Lex | ||
| prec(if) | = | 0 | status(if) | = | [3, 2, 1] | list-extension(if) | = | Lex | ||
| prec(quot) | = | 0 | status(quot) | = | [2, 1, 3] | list-extension(quot) | = | Lex | ||
| prec(times) | = | 0 | status(times) | = | [1, 2] | list-extension(times) | = | Lex | ||
| prec(pr) | = | 0 | status(pr) | = | [1, 2] | list-extension(pr) | = | Lex | ||
| prec(divides#) | = | 0 | status(divides#) | = | [] | list-extension(divides#) | = | Lex | ||
| prec(plus) | = | 0 | status(plus) | = | [2, 1] | list-extension(plus) | = | Lex | ||
| prec(if#) | = | 0 | status(if#) | = | [3, 2, 1] | list-extension(if#) | = | Lex | ||
| prec(quot#) | = | 0 | status(quot#) | = | [3, 2, 1] | list-extension(quot#) | = | Lex | ||
| prec(zero#) | = | 0 | status(zero#) | = | [] | list-extension(zero#) | = | Lex | ||
| prec(divides) | = | 0 | status(divides) | = | [1, 2] | list-extension(divides) | = | Lex |
| [zero(x1)] | = | 1 |
| [s(x1)] | = | x1 + 2 |
| [prime(x1)] | = | 1 |
| [plus#(x1, x2)] | = | max(x1 + 21239, x2 + 1, 0) |
| [eq(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [false] | = | 0 |
| [div(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [p#(x1)] | = | 1 |
| [true] | = | 0 |
| [eq#(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [prime#(x1)] | = | 1 |
| [p(x1)] | = | x1 + 0 |
| [times#(x1, x2)] | = | max(x2 + 1, 0) |
| [0] | = | 7758 |
| [if(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [quot(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 1, 0) |
| [times(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [pr(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [divides#(x1, x2)] | = | x2 + 1 |
| [plus(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [if#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [quot#(x1, x2, x3)] | = | x1 + x2 + x3 + 1 |
| [zero#(x1)] | = | 1 |
| [divides(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| p(0) | → | 0 | (1) |
| p(s(x)) | → | x | (2) |
| plus#(s(x),y) | → | plus#(p(s(x)),y) | (53) |
The dependency pairs are split into 0 components.
| eq#(s(x),s(y)) | → | eq#(x,y) | (34) |
| [zero(x1)] | = | x1 + 12 |
| [div#(x1, x2)] | = | 0 |
| [s(x1)] | = | x1 + 1 |
| [prime(x1)] | = | 0 |
| [plus#(x1, x2)] | = | 0 |
| [pr#(x1, x2)] | = | 1 |
| [eq(x1, x2)] | = | x1 + x2 + 1 |
| [false] | = | 9 |
| [div(x1, x2)] | = | x1 + x2 + 0 |
| [p#(x1)] | = | 0 |
| [true] | = | 6 |
| [eq#(x1, x2)] | = | x1 + 0 |
| [prime#(x1)] | = | 0 |
| [p(x1)] | = | 1 |
| [times#(x1, x2)] | = | 0 |
| [0] | = | 2 |
| [if(x1, x2, x3)] | = | 13 |
| [quot(x1, x2, x3)] | = | x3 + 2 |
| [times(x1, x2)] | = | x1 + 1 |
| [pr(x1, x2)] | = | 13 |
| [divides#(x1, x2)] | = | 1 |
| [plus(x1, x2)] | = | 722 |
| [if#(x1, x2, x3)] | = | 0 |
| [quot#(x1, x2, x3)] | = | 0 |
| [zero#(x1)] | = | 9514 |
| [divides(x1, x2)] | = | x2 + 1 |
| if(false,x,y) | → | pr(x,y) | (26) |
| zero(div(x,x)) | → | x | (27) |
| zero(divides(x,x)) | → | x | (28) |
| if(true,x,y) | → | false | (25) |
| zero(quot(x,x,x)) | → | x | (30) |
| zero(s(x)) | → | if(eq(x,s(0)),plus(zero(0),0),s(plus(0,zero(0)))) | (31) |
| pr(x,s(0)) | → | true | (23) |
| pr(x,s(s(y))) | → | if(divides(s(s(y)),x),x,s(y)) | (24) |
| zero(times(x,x)) | → | x | (29) |
| eq#(s(x),s(y)) | → | eq#(x,y) | (34) |
The dependency pairs are split into 0 components.