The rewrite relation of the following TRS is considered.
g(s(x),s(y)) | → | if(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) | (1) |
n(0,y) | → | 0 | (2) |
n(x,0) | → | 0 | (3) |
n(s(x),s(y)) | → | s(n(x,y)) | (4) |
m(0,y) | → | y | (5) |
m(x,0) | → | x | (6) |
m(s(x),s(y)) | → | s(m(x,y)) | (7) |
k(0,s(y)) | → | 0 | (8) |
k(s(x),s(y)) | → | s(k(minus(x,y),s(y))) | (9) |
t(x) | → | p(x,x) | (10) |
p(s(x),s(y)) | → | s(s(p(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) | (11) |
p(s(x),x) | → | p(if(gt(x,x),id(x),id(x)),s(x)) | (12) |
p(0,y) | → | y | (13) |
p(id(x),s(y)) | → | s(p(x,if(gt(s(y),y),y,s(y)))) | (14) |
minus(x,0) | → | x | (15) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
id(x) | → | x | (17) |
if(true,x,y) | → | x | (18) |
if(false,x,y) | → | y | (19) |
not(x) | → | if(x,false,true) | (20) |
and(x,false) | → | false | (21) |
and(true,true) | → | true | (22) |
f(0) | → | true | (23) |
f(s(x)) | → | h(x) | (24) |
h(0) | → | false | (25) |
h(s(x)) | → | f(x) | (26) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
k#(s(x),s(y)) | → | k#(minus(x,y),s(y)) | (30) |
n#(s(x),s(y)) | → | n#(x,y) | (31) |
g#(s(x),s(y)) | → | f#(s(y)) | (32) |
g#(s(x),s(y)) | → | n#(x,y) | (33) |
g#(s(x),s(y)) | → | n#(s(x),s(y)) | (34) |
g#(s(x),s(y)) | → | n#(x,y) | (33) |
g#(s(x),s(y)) | → | n#(s(x),s(y)) | (34) |
g#(s(x),s(y)) | → | g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) | (35) |
p#(s(x),s(y)) | → | gt#(x,y) | (36) |
g#(s(x),s(y)) | → | m#(x,y) | (37) |
p#(s(x),x) | → | p#(if(gt(x,x),id(x),id(x)),s(x)) | (38) |
p#(s(x),s(y)) | → | gt#(x,y) | (36) |
p#(s(x),s(y)) | → | id#(y) | (39) |
h#(s(x)) | → | f#(x) | (40) |
t#(x) | → | p#(x,x) | (41) |
f#(s(x)) | → | h#(x) | (42) |
g#(s(x),s(y)) | → | g#(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0)))) | (43) |
p#(s(x),x) | → | if#(gt(x,x),id(x),id(x)) | (44) |
g#(s(x),s(y)) | → | t#(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))) | (45) |
minus#(s(x),s(y)) | → | minus#(x,y) | (46) |
p#(id(x),s(y)) | → | gt#(s(y),y) | (47) |
p#(s(x),s(y)) | → | if#(not(gt(x,y)),id(x),id(y)) | (48) |
g#(s(x),s(y)) | → | minus#(m(x,y),n(x,y)) | (49) |
p#(s(x),s(y)) | → | id#(x) | (50) |
g#(s(x),s(y)) | → | minus#(m(x,y),n(x,y)) | (49) |
p#(s(x),s(y)) | → | if#(gt(x,y),x,y) | (51) |
g#(s(x),s(y)) | → | f#(s(x)) | (52) |
m#(s(x),s(y)) | → | m#(x,y) | (53) |
g#(s(x),s(y)) | → | m#(x,y) | (37) |
g#(s(x),s(y)) | → | and#(f(s(x)),f(s(y))) | (54) |
p#(s(x),x) | → | id#(x) | (55) |
g#(s(x),s(y)) | → | k#(minus(m(x,y),n(x,y)),s(s(0))) | (56) |
p#(id(x),s(y)) | → | if#(gt(s(y),y),y,s(y)) | (57) |
g#(s(x),s(y)) | → | if#(and(f(s(x)),f(s(y))),t(g(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0))))),g(minus(m(x,y),n(x,y)),n(s(x),s(y)))) | (58) |
g#(s(x),s(y)) | → | k#(n(s(x),s(y)),s(s(0))) | (59) |
not#(x) | → | if#(x,false,true) | (60) |
p#(s(x),x) | → | id#(x) | (55) |
k#(s(x),s(y)) | → | minus#(x,y) | (61) |
gt#(s(x),s(y)) | → | gt#(x,y) | (62) |
p#(s(x),s(y)) | → | not#(gt(x,y)) | (63) |
p#(s(x),x) | → | gt#(x,x) | (64) |
p#(s(x),s(y)) | → | p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (65) |
p#(id(x),s(y)) | → | p#(x,if(gt(s(y),y),y,s(y))) | (66) |
The dependency pairs are split into 8 components.
g#(s(x),s(y)) | → | g#(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0)))) | (43) |
g#(s(x),s(y)) | → | g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) | (35) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 12461 |
[n(x1, x2)] | = | max(x1 + 12457, 0) |
[gt(x1, x2)] | = | max(0) |
[minus(x1, x2)] | = | max(x1 + 0, 0) |
[and(x1, x2)] | = | max(0) |
[k(x1, x2)] | = | max(x1 + 1, 0) |
[t(x1)] | = | 0 |
[false] | = | 0 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | max(0) |
[true] | = | 0 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | max(0) |
[if(x1, x2, x3)] | = | max(0) |
[0] | = | 4620 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | max(0) |
[gt#(x1, x2)] | = | max(0) |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | max(x1 + 20205, x2 + 7746, 0) |
[minus#(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[id(x1)] | = | 0 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | max(0) |
[m#(x1, x2)] | = | max(0) |
[g(x1, x2)] | = | max(0) |
[and#(x1, x2)] | = | max(0) |
[not(x1)] | = | 0 |
[m(x1, x2)] | = | max(x1 + 3, x2 + 1, 0) |
n(s(x),s(y)) | → | s(n(x,y)) | (4) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
n(x,0) | → | 0 | (3) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
m(0,y) | → | y | (5) |
m(s(x),s(y)) | → | s(m(x,y)) | (7) |
k(s(x),s(y)) | → | s(k(minus(x,y),s(y))) | (9) |
m(x,0) | → | x | (6) |
n(0,y) | → | 0 | (2) |
g#(s(x),s(y)) | → | g#(minus(m(x,y),n(x,y)),n(s(x),s(y))) | (35) |
The dependency pairs are split into 1 component.
g#(s(x),s(y)) | → | g#(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0)))) | (43) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 37900 |
[n(x1, x2)] | = | max(x1 + 1, 0) |
[gt(x1, x2)] | = | max(0) |
[minus(x1, x2)] | = | max(x1 + 0, 0) |
[and(x1, x2)] | = | max(0) |
[k(x1, x2)] | = | max(x1 + 1, 0) |
[t(x1)] | = | 0 |
[false] | = | 0 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | max(0) |
[true] | = | 0 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | max(0) |
[if(x1, x2, x3)] | = | max(0) |
[0] | = | 1 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | max(0) |
[gt#(x1, x2)] | = | max(0) |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | max(x1 + 23982, x2 + 23979, 0) |
[minus#(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[id(x1)] | = | 0 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | max(0) |
[m#(x1, x2)] | = | max(0) |
[g(x1, x2)] | = | max(0) |
[and#(x1, x2)] | = | max(0) |
[not(x1)] | = | 0 |
[m(x1, x2)] | = | max(x1 + 37895, x2 + 37894, 0) |
n(s(x),s(y)) | → | s(n(x,y)) | (4) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
n(x,0) | → | 0 | (3) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
m(0,y) | → | y | (5) |
m(s(x),s(y)) | → | s(m(x,y)) | (7) |
k(s(x),s(y)) | → | s(k(minus(x,y),s(y))) | (9) |
m(x,0) | → | x | (6) |
n(0,y) | → | 0 | (2) |
g#(s(x),s(y)) | → | g#(k(minus(m(x,y),n(x,y)),s(s(0))),k(n(s(x),s(y)),s(s(0)))) | (43) |
The dependency pairs are split into 0 components.
p#(id(x),s(y)) | → | p#(x,if(gt(s(y),y),y,s(y))) | (66) |
p#(s(x),s(y)) | → | p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (65) |
p#(s(x),x) | → | p#(if(gt(x,x),id(x),id(x)),s(x)) | (38) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 3 |
[n(x1, x2)] | = | max(x1 + 1, 0) |
[gt(x1, x2)] | = | max(0) |
[minus(x1, x2)] | = | max(x1 + 0, 0) |
[and(x1, x2)] | = | max(0) |
[k(x1, x2)] | = | max(x1 + 1, 0) |
[t(x1)] | = | 0 |
[false] | = | 0 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | max(x1 + 17900, x2 + 17897, 0) |
[true] | = | 0 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | max(0) |
[if(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 0, 0) |
[0] | = | 1 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | max(0) |
[gt#(x1, x2)] | = | max(0) |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | max(x1 + 23982, x2 + 23979, 0) |
[minus#(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[id(x1)] | = | x1 + 1 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | max(0) |
[m#(x1, x2)] | = | max(0) |
[g(x1, x2)] | = | max(0) |
[and#(x1, x2)] | = | max(0) |
[not(x1)] | = | x1 + 5 |
[m(x1, x2)] | = | max(x1 + 2, x2 + 1, 0) |
if(true,x,y) | → | x | (18) |
n(s(x),s(y)) | → | s(n(x,y)) | (4) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
n(x,0) | → | 0 | (3) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
m(0,y) | → | y | (5) |
m(s(x),s(y)) | → | s(m(x,y)) | (7) |
not(x) | → | if(x,false,true) | (20) |
k(s(x),s(y)) | → | s(k(minus(x,y),s(y))) | (9) |
m(x,0) | → | x | (6) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
n(0,y) | → | 0 | (2) |
p#(s(x),x) | → | p#(if(gt(x,x),id(x),id(x)),s(x)) | (38) |
The dependency pairs are split into 1 component.
p#(id(x),s(y)) | → | p#(x,if(gt(s(y),y),y,s(y))) | (66) |
p#(s(x),s(y)) | → | p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (65) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 4 |
[n(x1, x2)] | = | max(x1 + 1, 0) |
[gt(x1, x2)] | = | max(0) |
[minus(x1, x2)] | = | max(x1 + 0, 0) |
[and(x1, x2)] | = | max(0) |
[k(x1, x2)] | = | max(x1 + 1, 0) |
[t(x1)] | = | 0 |
[false] | = | 0 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | max(x1 + 28938, x2 + 28940, 0) |
[true] | = | 0 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | max(0) |
[if(x1, x2, x3)] | = | max(x1 + 1, x2 + 1, x3 + 0, 0) |
[0] | = | 1 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | max(0) |
[gt#(x1, x2)] | = | max(0) |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | max(x1 + 23982, x2 + 23979, 0) |
[minus#(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[id(x1)] | = | x1 + 0 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | max(0) |
[m#(x1, x2)] | = | max(0) |
[g(x1, x2)] | = | max(0) |
[and#(x1, x2)] | = | max(0) |
[not(x1)] | = | x1 + 2 |
[m(x1, x2)] | = | max(x1 + 2, x2 + 1, 0) |
if(true,x,y) | → | x | (18) |
n(s(x),s(y)) | → | s(n(x,y)) | (4) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
n(x,0) | → | 0 | (3) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
m(0,y) | → | y | (5) |
m(s(x),s(y)) | → | s(m(x,y)) | (7) |
not(x) | → | if(x,false,true) | (20) |
k(s(x),s(y)) | → | s(k(minus(x,y),s(y))) | (9) |
m(x,0) | → | x | (6) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
n(0,y) | → | 0 | (2) |
p#(s(x),s(y)) | → | p#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (65) |
The dependency pairs are split into 1 component.
p#(id(x),s(y)) | → | p#(x,if(gt(s(y),y),y,s(y))) | (66) |
[h(x1)] | = | 0 |
[s(x1)] | = | 3 |
[n(x1, x2)] | = | 1 |
[gt(x1, x2)] | = | 1 |
[minus(x1, x2)] | = | 1 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 2 |
[t(x1)] | = | 0 |
[false] | = | 1 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 1 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 2 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[m(x1, x2)] | = | 1 |
if(true,x,y) | → | x | (18) |
k(0,s(y)) | → | 0 | (8) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
p#(id(x),s(y)) | → | p#(x,if(gt(s(y),y),y,s(y))) | (66) |
The dependency pairs are split into 0 components.
m#(s(x),s(y)) | → | m#(x,y) | (53) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 1 |
[n(x1, x2)] | = | 11820 |
[gt(x1, x2)] | = | 23505 |
[minus(x1, x2)] | = | 1 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 11821 |
[t(x1)] | = | 0 |
[false] | = | 23505 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 2805 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 11821 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | x1 + 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 26309 |
[m(x1, x2)] | = | 4187 |
if(true,x,y) | → | x | (18) |
k(0,s(y)) | → | 0 | (8) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
m#(s(x),s(y)) | → | m#(x,y) | (53) |
The dependency pairs are split into 0 components.
f#(s(x)) | → | h#(x) | (42) |
h#(s(x)) | → | f#(x) | (40) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 1 |
[n(x1, x2)] | = | 32968 |
[gt(x1, x2)] | = | 1 |
[minus(x1, x2)] | = | 1 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 32969 |
[t(x1)] | = | 0 |
[false] | = | 1 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 1 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 32969 |
[h#(x1)] | = | x1 + 0 |
[k#(x1, x2)] | = | 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | x1 + 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 1 |
[m(x1, x2)] | = | 42004 |
if(true,x,y) | → | x | (18) |
k(0,s(y)) | → | 0 | (8) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
f#(s(x)) | → | h#(x) | (42) |
h#(s(x)) | → | f#(x) | (40) |
The dependency pairs are split into 0 components.
n#(s(x),s(y)) | → | n#(x,y) | (31) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 1 |
[n(x1, x2)] | = | 7690 |
[gt(x1, x2)] | = | 1 |
[minus(x1, x2)] | = | 1 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 7691 |
[t(x1)] | = | 0 |
[false] | = | 1 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 1 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 7691 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | x1 + 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 1 |
[m(x1, x2)] | = | 42004 |
if(true,x,y) | → | x | (18) |
k(0,s(y)) | → | 0 | (8) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
n#(s(x),s(y)) | → | n#(x,y) | (31) |
The dependency pairs are split into 0 components.
k#(s(x),s(y)) | → | k#(minus(x,y),s(y)) | (30) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 24169 |
[n(x1, x2)] | = | 1 |
[gt(x1, x2)] | = | 1 |
[minus(x1, x2)] | = | x1 + 24168 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 23638 |
[t(x1)] | = | 0 |
[false] | = | 1 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 1 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 23638 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | x1 + 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[m(x1, x2)] | = | 43486 |
if(true,x,y) | → | x | (18) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
k#(s(x),s(y)) | → | k#(minus(x,y),s(y)) | (30) |
The dependency pairs are split into 0 components.
minus#(s(x),s(y)) | → | minus#(x,y) | (46) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 1 |
[n(x1, x2)] | = | 35475 |
[gt(x1, x2)] | = | 31135 |
[minus(x1, x2)] | = | x1 + 24168 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 35476 |
[t(x1)] | = | 0 |
[false] | = | 31135 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 14923 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 35476 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | x1 + 0 |
[gt#(x1, x2)] | = | 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | x2 + 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 46057 |
[m(x1, x2)] | = | 43486 |
if(true,x,y) | → | x | (18) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
minus#(s(x),s(y)) | → | minus#(x,y) | (46) |
The dependency pairs are split into 0 components.
gt#(s(x),s(y)) | → | gt#(x,y) | (62) |
[h(x1)] | = | 0 |
[s(x1)] | = | x1 + 1 |
[n(x1, x2)] | = | 35475 |
[gt(x1, x2)] | = | 14923 |
[minus(x1, x2)] | = | x1 + 24168 |
[and(x1, x2)] | = | 0 |
[k(x1, x2)] | = | 35476 |
[t(x1)] | = | 0 |
[false] | = | 120 |
[id#(x1)] | = | 0 |
[p#(x1, x2)] | = | x1 + 0 |
[true] | = | 14923 |
[f(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[p(x1, x2)] | = | 0 |
[if(x1, x2, x3)] | = | x2 + x3 + 0 |
[0] | = | 35476 |
[h#(x1)] | = | 0 |
[k#(x1, x2)] | = | x1 + 0 |
[gt#(x1, x2)] | = | x2 + 0 |
[f#(x1)] | = | 0 |
[g#(x1, x2)] | = | 0 |
[minus#(x1, x2)] | = | 0 |
[if#(x1, x2, x3)] | = | 0 |
[id(x1)] | = | x1 + 28872 |
[t#(x1)] | = | 0 |
[n#(x1, x2)] | = | 0 |
[m#(x1, x2)] | = | 0 |
[g(x1, x2)] | = | 0 |
[and#(x1, x2)] | = | 0 |
[not(x1)] | = | 15042 |
[m(x1, x2)] | = | 43486 |
if(true,x,y) | → | x | (18) |
minus(x,0) | → | x | (15) |
k(0,s(y)) | → | 0 | (8) |
minus(s(x),s(y)) | → | minus(x,y) | (16) |
if(false,x,y) | → | y | (19) |
id(x) | → | x | (17) |
gt(s(x),0) | → | true | (27) |
gt(0,y) | → | false | (28) |
gt(s(x),s(y)) | → | gt(x,y) | (29) |
gt#(s(x),s(y)) | → | gt#(x,y) | (62) |
The dependency pairs are split into 0 components.