The rewrite relation of the following TRS is considered.
0(#) | → | # | (1) |
+(x,#) | → | x | (2) |
+(#,x) | → | x | (3) |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
-(#,x) | → | # | (9) |
-(x,#) | → | x | (10) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
not(true) | → | false | (15) |
not(false) | → | true | (16) |
if(true,x,y) | → | x | (17) |
if(false,x,y) | → | y | (18) |
eq(#,#) | → | true | (19) |
eq(#,1(y)) | → | false | (20) |
eq(1(x),#) | → | false | (21) |
eq(#,0(y)) | → | eq(#,y) | (22) |
eq(0(x),#) | → | eq(x,#) | (23) |
eq(1(x),1(y)) | → | eq(x,y) | (24) |
eq(0(x),1(y)) | → | false | (25) |
eq(1(x),0(y)) | → | false | (26) |
eq(0(x),0(y)) | → | eq(x,y) | (27) |
ge(0(x),0(y)) | → | ge(x,y) | (28) |
ge(0(x),1(y)) | → | not(ge(y,x)) | (29) |
ge(1(x),0(y)) | → | ge(x,y) | (30) |
ge(1(x),1(y)) | → | ge(x,y) | (31) |
ge(x,#) | → | true | (32) |
ge(#,0(x)) | → | ge(#,x) | (33) |
ge(#,1(x)) | → | false | (34) |
log(x) | → | -(log'(x),1(#)) | (35) |
log'(#) | → | # | (36) |
log'(1(x)) | → | +(log'(x),1(#)) | (37) |
log'(0(x)) | → | if(ge(x,1(#)),+(log'(x),1(#)),#) | (38) |
*(#,x) | → | # | (39) |
*(0(x),y) | → | 0(*(x,y)) | (40) |
*(1(x),y) | → | +(0(*(x,y)),y) | (41) |
*(*(x,y),z) | → | *(x,*(y,z)) | (42) |
*(x,+(y,z)) | → | +(*(x,y),*(x,z)) | (43) |
app(nil,l) | → | l | (44) |
app(cons(x,l1),l2) | → | cons(x,app(l1,l2)) | (45) |
sum(nil) | → | 0(#) | (46) |
sum(cons(x,l)) | → | +(x,sum(l)) | (47) |
sum(app(l1,l2)) | → | +(sum(l1),sum(l2)) | (48) |
prod(nil) | → | 1(#) | (49) |
prod(cons(x,l)) | → | *(x,prod(l)) | (50) |
prod(app(l1,l2)) | → | *(prod(l1),prod(l2)) | (51) |
mem(x,nil) | → | false | (52) |
mem(x,cons(y,l)) | → | if(eq(x,y),true,mem(x,l)) | (53) |
inter(x,nil) | → | nil | (54) |
inter(nil,x) | → | nil | (55) |
inter(app(l1,l2),l3) | → | app(inter(l1,l3),inter(l2,l3)) | (56) |
inter(l1,app(l2,l3)) | → | app(inter(l1,l2),inter(l1,l3)) | (57) |
inter(cons(x,l1),l2) | → | ifinter(mem(x,l2),x,l1,l2) | (58) |
inter(l1,cons(x,l2)) | → | ifinter(mem(x,l1),x,l2,l1) | (59) |
ifinter(true,x,l1,l2) | → | cons(x,inter(l1,l2)) | (60) |
ifinter(false,x,l1,l2) | → | inter(l1,l2) | (61) |
*#(x,+(y,z)) | → | *#(x,y) | (62) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l2) | (63) |
log'#(0(x)) | → | +#(log'(x),1(#)) | (64) |
*#(0(x),y) | → | *#(x,y) | (65) |
+#(+(x,y),z) | → | +#(x,+(y,z)) | (66) |
eq#(0(x),#) | → | eq#(x,#) | (67) |
inter#(l1,app(l2,l3)) | → | app#(inter(l1,l2),inter(l1,l3)) | (68) |
-#(0(x),0(y)) | → | -#(x,y) | (69) |
prod#(app(l1,l2)) | → | prod#(l1) | (70) |
app#(cons(x,l1),l2) | → | app#(l1,l2) | (71) |
inter#(app(l1,l2),l3) | → | inter#(l2,l3) | (72) |
prod#(cons(x,l)) | → | prod#(l) | (73) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (74) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (75) |
+#(0(x),1(y)) | → | +#(x,y) | (76) |
prod#(app(l1,l2)) | → | prod#(l2) | (77) |
log#(x) | → | -#(log'(x),1(#)) | (78) |
+#(1(x),1(y)) | → | +#(x,y) | (79) |
-#(1(x),1(y)) | → | -#(x,y) | (80) |
+#(+(x,y),z) | → | +#(y,z) | (81) |
-#(0(x),0(y)) | → | 0#(-(x,y)) | (82) |
inter#(app(l1,l2),l3) | → | app#(inter(l1,l3),inter(l2,l3)) | (83) |
*#(1(x),y) | → | *#(x,y) | (84) |
*#(*(x,y),z) | → | *#(x,*(y,z)) | (85) |
*#(1(x),y) | → | +#(0(*(x,y)),y) | (86) |
+#(1(x),1(y)) | → | 0#(+(+(x,y),1(#))) | (87) |
inter#(cons(x,l1),l2) | → | ifinter#(mem(x,l2),x,l1,l2) | (88) |
prod#(cons(x,l)) | → | *#(x,prod(l)) | (89) |
sum#(app(l1,l2)) | → | sum#(l2) | (90) |
eq#(1(x),1(y)) | → | eq#(x,y) | (91) |
+#(0(x),0(y)) | → | +#(x,y) | (92) |
*#(1(x),y) | → | 0#(*(x,y)) | (93) |
+#(1(x),0(y)) | → | +#(x,y) | (94) |
ge#(1(x),0(y)) | → | ge#(x,y) | (95) |
log'#(1(x)) | → | +#(log'(x),1(#)) | (96) |
ge#(0(x),0(y)) | → | ge#(x,y) | (97) |
log'#(0(x)) | → | log'#(x) | (98) |
inter#(app(l1,l2),l3) | → | inter#(l1,l3) | (99) |
-#(0(x),1(y)) | → | -#(x,y) | (100) |
inter#(cons(x,l1),l2) | → | mem#(x,l2) | (101) |
mem#(x,cons(y,l)) | → | mem#(x,l) | (102) |
log#(x) | → | log'#(x) | (103) |
-#(1(x),0(y)) | → | -#(x,y) | (104) |
*#(*(x,y),z) | → | *#(y,z) | (105) |
eq#(0(x),0(y)) | → | eq#(x,y) | (106) |
inter#(l1,cons(x,l2)) | → | mem#(x,l1) | (107) |
ge#(0(x),1(y)) | → | ge#(y,x) | (108) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l3) | (109) |
ifinter#(true,x,l1,l2) | → | inter#(l1,l2) | (110) |
log'#(0(x)) | → | ge#(x,1(#)) | (111) |
sum#(app(l1,l2)) | → | sum#(l1) | (112) |
*#(0(x),y) | → | 0#(*(x,y)) | (113) |
log'#(0(x)) | → | if#(ge(x,1(#)),+(log'(x),1(#)),#) | (114) |
ge#(#,0(x)) | → | ge#(#,x) | (115) |
sum#(cons(x,l)) | → | sum#(l) | (116) |
inter#(l1,cons(x,l2)) | → | ifinter#(mem(x,l1),x,l2,l1) | (117) |
mem#(x,cons(y,l)) | → | eq#(x,y) | (118) |
eq#(#,0(y)) | → | eq#(#,y) | (119) |
ifinter#(false,x,l1,l2) | → | inter#(l1,l2) | (120) |
+#(0(x),0(y)) | → | 0#(+(x,y)) | (121) |
prod#(app(l1,l2)) | → | *#(prod(l1),prod(l2)) | (122) |
sum#(app(l1,l2)) | → | +#(sum(l1),sum(l2)) | (123) |
sum#(cons(x,l)) | → | +#(x,sum(l)) | (124) |
*#(x,+(y,z)) | → | *#(x,z) | (125) |
*#(x,+(y,z)) | → | +#(*(x,y),*(x,z)) | (126) |
-#(1(x),1(y)) | → | 0#(-(x,y)) | (127) |
sum#(nil) | → | 0#(#) | (128) |
log'#(1(x)) | → | log'#(x) | (129) |
ge#(0(x),1(y)) | → | not#(ge(y,x)) | (130) |
ge#(1(x),1(y)) | → | ge#(x,y) | (131) |
mem#(x,cons(y,l)) | → | if#(eq(x,y),true,mem(x,l)) | (132) |
The dependency pairs are split into 14 components.
sum#(app(l1,l2)) | → | sum#(l2) | (90) |
sum#(cons(x,l)) | → | sum#(l) | (116) |
sum#(app(l1,l2)) | → | sum#(l1) | (112) |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 0 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | x1 + 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
sum#(app(l1,l2)) | → | sum#(l2) | (90) |
sum#(cons(x,l)) | → | sum#(l) | (116) |
sum#(app(l1,l2)) | → | sum#(l1) | (112) |
The dependency pairs are split into 0 components.
prod#(app(l1,l2)) | → | prod#(l2) | (77) |
prod#(cons(x,l)) | → | prod#(l) | (73) |
prod#(app(l1,l2)) | → | prod#(l1) | (70) |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | x1 + 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 0 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
prod#(app(l1,l2)) | → | prod#(l2) | (77) |
prod#(cons(x,l)) | → | prod#(l) | (73) |
prod#(app(l1,l2)) | → | prod#(l1) | (70) |
The dependency pairs are split into 0 components.
-#(0(x),1(y)) | → | -#(x,y) | (100) |
-#(1(x),1(y)) | → | -#(x,y) | (80) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (74) |
-#(0(x),0(y)) | → | -#(x,y) | (69) |
-#(1(x),0(y)) | → | -#(x,y) | (104) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 20163 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 0 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 20164 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x2 + 11293 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x2 + 0 |
[cons(x1, x2)] | = | 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
-#(0(x),1(y)) | → | -#(x,y) | (100) |
-#(1(x),1(y)) | → | -#(x,y) | (80) |
-#(0(x),0(y)) | → | -#(x,y) | (69) |
-#(1(x),0(y)) | → | -#(x,y) | (104) |
The dependency pairs are split into 1 component.
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (74) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 8946 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 42207 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 8946 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
-#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (74) |
The dependency pairs are split into 0 components.
log'#(0(x)) | → | log'#(x) | (98) |
log'#(1(x)) | → | log'#(x) | (129) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 1 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 30205 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | x1 + 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
log'#(0(x)) | → | log'#(x) | (98) |
log'#(1(x)) | → | log'#(x) | (129) |
The dependency pairs are split into 0 components.
ge#(1(x),1(y)) | → | ge#(x,y) | (131) |
ge#(0(x),0(y)) | → | ge#(x,y) | (97) |
ge#(1(x),0(y)) | → | ge#(x,y) | (95) |
ge#(0(x),1(y)) | → | ge#(y,x) | (108) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 2241 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | x1 + x2 + 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 2241 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
ge#(1(x),1(y)) | → | ge#(x,y) | (131) |
ge#(0(x),0(y)) | → | ge#(x,y) | (97) |
ge#(1(x),0(y)) | → | ge#(x,y) | (95) |
ge#(0(x),1(y)) | → | ge#(y,x) | (108) |
The dependency pairs are split into 0 components.
ge#(#,0(x)) | → | ge#(#,x) | (115) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 591 |
[mem(x1, x2)] | = | 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | 0 |
[false] | = | 0 |
[ge#(x1, x2)] | = | x2 + 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 3287 |
[ifinter#(x1,...,x4)] | = | 0 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 591 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | 1 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
ge#(#,0(x)) | → | ge#(#,x) | (115) |
The dependency pairs are split into 0 components.
inter#(app(l1,l2),l3) | → | inter#(l1,l3) | (99) |
inter#(cons(x,l1),l2) | → | ifinter#(mem(x,l2),x,l1,l2) | (88) |
ifinter#(false,x,l1,l2) | → | inter#(l1,l2) | (120) |
inter#(l1,cons(x,l2)) | → | ifinter#(mem(x,l1),x,l2,l1) | (117) |
inter#(app(l1,l2),l3) | → | inter#(l2,l3) | (72) |
ifinter#(true,x,l1,l2) | → | inter#(l1,l2) | (110) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l3) | (109) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l2) | (63) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 23612 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 23614 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 12618 |
[ifinter#(x1,...,x4)] | = | x3 + x4 + 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 23612 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 23614 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | x2 + 2 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | x1 + x2 + 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | x1 + x2 + 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
mem(x,nil) | → | false | (52) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
inter#(app(l1,l2),l3) | → | inter#(l1,l3) | (99) |
inter#(cons(x,l1),l2) | → | ifinter#(mem(x,l2),x,l1,l2) | (88) |
ifinter#(false,x,l1,l2) | → | inter#(l1,l2) | (120) |
inter#(l1,cons(x,l2)) | → | ifinter#(mem(x,l1),x,l2,l1) | (117) |
inter#(app(l1,l2),l3) | → | inter#(l2,l3) | (72) |
ifinter#(true,x,l1,l2) | → | inter#(l1,l2) | (110) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l3) | (109) |
inter#(l1,app(l2,l3)) | → | inter#(l1,l2) | (63) |
The dependency pairs are split into 0 components.
app#(cons(x,l1),l2) | → | app#(l1,l2) | (71) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 23612 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 23614 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 12618 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 23612 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 23614 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | x1 + 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | x2 + 2 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | 0 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | 0 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
mem(x,nil) | → | false | (52) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
app#(cons(x,l1),l2) | → | app#(l1,l2) | (71) |
The dependency pairs are split into 0 components.
*#(x,+(y,z)) | → | *#(x,z) | (125) |
*#(*(x,y),z) | → | *#(x,*(y,z)) | (85) |
*#(1(x),y) | → | *#(x,y) | (84) |
*#(*(x,y),z) | → | *#(y,z) | (105) |
*#(0(x),y) | → | *#(x,y) | (65) |
*#(x,+(y,z)) | → | *#(x,y) | (62) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 1 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 3 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | x1 + 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 3 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 0 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | x1 + 0 |
[cons(x1, x2)] | = | x2 + 2 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 1 |
[app(x1, x2)] | = | 1 |
0(#) | → | # | (1) |
-(x,#) | → | x | (10) |
mem(x,nil) | → | false | (52) |
-(1(x),1(y)) | → | 0(-(x,y)) | (14) |
-(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
-(0(x),0(y)) | → | 0(-(x,y)) | (11) |
-(#,x) | → | # | (9) |
-(1(x),0(y)) | → | 1(-(x,y)) | (13) |
*#(*(x,y),z) | → | *#(x,*(y,z)) | (85) |
*#(1(x),y) | → | *#(x,y) | (84) |
*#(*(x,y),z) | → | *#(y,z) | (105) |
*#(0(x),y) | → | *#(x,y) | (65) |
The dependency pairs are split into 1 component.
*#(x,+(y,z)) | → | *#(x,z) | (125) |
*#(x,+(y,z)) | → | *#(x,y) | (62) |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[mem(x1, x2)] | = | max(0) |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | max(0) |
[eq(x1, x2)] | = | max(0) |
[false] | = | 0 |
[ge#(x1, x2)] | = | max(0) |
[mem#(x1, x2)] | = | max(0) |
[*#(x1, x2)] | = | max(x2 + 7720, 0) |
[log#(x1)] | = | 0 |
[#] | = | 0 |
[ifinter#(x1,...,x4)] | = | max(0) |
[true] | = | 0 |
[eq#(x1, x2)] | = | max(0) |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | max(0) |
[ge(x1, x2)] | = | max(0) |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | max(0) |
[app#(x1, x2)] | = | max(0) |
[-#(x1, x2)] | = | max(0) |
[cons(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[inter(x1, x2)] | = | max(0) |
[inter#(x1, x2)] | = | max(0) |
[+(x1, x2)] | = | max(x1 + 39, x2 + 0, 0) |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | max(0) |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | max(0) |
[app(x1, x2)] | = | max(0) |
*#(x,+(y,z)) | → | *#(x,y) | (62) |
The dependency pairs are split into 1 component.
*#(x,+(y,z)) | → | *#(x,z) | (125) |
[0#(x1)] | = | 0 |
[1(x1)] | = | 0 |
[mem(x1, x2)] | = | max(0) |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | max(0) |
[eq(x1, x2)] | = | max(0) |
[false] | = | 0 |
[ge#(x1, x2)] | = | max(0) |
[mem#(x1, x2)] | = | max(0) |
[*#(x1, x2)] | = | max(x2 + 16575, 0) |
[log#(x1)] | = | 0 |
[#] | = | 0 |
[ifinter#(x1,...,x4)] | = | max(0) |
[true] | = | 0 |
[eq#(x1, x2)] | = | max(0) |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | 0 |
[if(x1, x2, x3)] | = | max(0) |
[ge(x1, x2)] | = | max(0) |
[nil] | = | 0 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | max(0) |
[app#(x1, x2)] | = | max(0) |
[-#(x1, x2)] | = | max(0) |
[cons(x1, x2)] | = | max(0) |
[if#(x1, x2, x3)] | = | max(0) |
[inter(x1, x2)] | = | max(0) |
[inter#(x1, x2)] | = | max(0) |
[+(x1, x2)] | = | max(x2 + 1, 0) |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | max(0) |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | max(0) |
[app(x1, x2)] | = | max(0) |
*#(x,+(y,z)) | → | *#(x,z) | (125) |
The dependency pairs are split into 0 components.
+#(1(x),0(y)) | → | +#(x,y) | (94) |
+#(0(x),0(y)) | → | +#(x,y) | (92) |
+#(+(x,y),z) | → | +#(y,z) | (81) |
+#(1(x),1(y)) | → | +#(x,y) | (79) |
+#(0(x),1(y)) | → | +#(x,y) | (76) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (75) |
+#(+(x,y),z) | → | +#(x,+(y,z)) | (66) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 37986 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + x2 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 1 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
+#(1(x),0(y)) | → | +#(x,y) | (94) |
+#(0(x),0(y)) | → | +#(x,y) | (92) |
+#(+(x,y),z) | → | +#(y,z) | (81) |
+#(1(x),1(y)) | → | +#(x,y) | (79) |
+#(0(x),1(y)) | → | +#(x,y) | (76) |
+#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (75) |
The dependency pairs are split into 1 component.
+#(+(x,y),z) | → | +#(x,+(y,z)) | (66) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 1 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 1 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
+#(+(x,y),z) | → | +#(x,+(y,z)) | (66) |
The dependency pairs are split into 0 components.
mem#(x,cons(y,l)) | → | mem#(x,l) | (102) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | x2 + 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 1 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 14972 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
mem#(x,cons(y,l)) | → | mem#(x,l) | (102) |
The dependency pairs are split into 0 components.
eq#(1(x),1(y)) | → | eq#(x,y) | (91) |
eq#(0(x),0(y)) | → | eq#(x,y) | (106) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | x1 + 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 1 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 1 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
eq#(1(x),1(y)) | → | eq#(x,y) | (91) |
eq#(0(x),0(y)) | → | eq#(x,y) | (106) |
The dependency pairs are split into 0 components.
eq#(0(x),#) | → | eq#(x,#) | (67) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | x1 + 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 1 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 36998 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
eq#(0(x),#) | → | eq#(x,#) | (67) |
The dependency pairs are split into 0 components.
eq#(#,0(y)) | → | eq#(#,y) | (119) |
[0#(x1)] | = | 0 |
[1(x1)] | = | x1 + 3 |
[mem(x1, x2)] | = | x1 + x2 + 0 |
[prod(x1)] | = | 0 |
[prod#(x1)] | = | 0 |
[ifinter(x1,...,x4)] | = | 0 |
[eq(x1, x2)] | = | x1 + 1 |
[false] | = | 5 |
[ge#(x1, x2)] | = | 0 |
[mem#(x1, x2)] | = | 0 |
[*#(x1, x2)] | = | 0 |
[log#(x1)] | = | 0 |
[#] | = | 1 |
[ifinter#(x1,...,x4)] | = | 1 |
[true] | = | 0 |
[eq#(x1, x2)] | = | x2 + 0 |
[sum(x1)] | = | 0 |
[not#(x1)] | = | 0 |
[log(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[if(x1, x2, x3)] | = | 0 |
[ge(x1, x2)] | = | 0 |
[nil] | = | 5 |
[log'#(x1)] | = | 0 |
[-(x1, x2)] | = | x1 + 1 |
[app#(x1, x2)] | = | 0 |
[-#(x1, x2)] | = | 0 |
[cons(x1, x2)] | = | x2 + 18781 |
[if#(x1, x2, x3)] | = | 0 |
[inter(x1, x2)] | = | 0 |
[inter#(x1, x2)] | = | 0 |
[+(x1, x2)] | = | x1 + x2 + 1 |
[log'(x1)] | = | 0 |
[sum#(x1)] | = | 0 |
[+#(x1, x2)] | = | x1 + 0 |
[not(x1)] | = | 0 |
[*(x1, x2)] | = | x1 + x2 + 1 |
[app(x1, x2)] | = | 1 |
+(0(x),0(y)) | → | 0(+(x,y)) | (4) |
+(+(x,y),z) | → | +(x,+(y,z)) | (8) |
0(#) | → | # | (1) |
+(#,x) | → | x | (3) |
+(0(x),1(y)) | → | 1(+(x,y)) | (5) |
+(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
mem(x,nil) | → | false | (52) |
+(1(x),0(y)) | → | 1(+(x,y)) | (6) |
+(x,#) | → | x | (2) |
eq#(#,0(y)) | → | eq#(#,y) | (119) |
The dependency pairs are split into 0 components.