The rewrite relation of the following TRS is considered.
| 0(#) | → | # | (1) |
| +(x,#) | → | x | (2) |
| +(#,x) | → | x | (3) |
| +(0(x),0(y)) | → | 0(+(x,y)) | (4) |
| +(0(x),1(y)) | → | 1(+(x,y)) | (5) |
| +(1(x),0(y)) | → | 1(+(x,y)) | (6) |
| +(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
| +(x,+(y,z)) | → | +(+(x,y),z) | (8) |
| -(x,#) | → | x | (9) |
| -(#,x) | → | # | (10) |
| -(0(x),0(y)) | → | 0(-(x,y)) | (11) |
| -(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
| -(1(x),0(y)) | → | 1(-(x,y)) | (13) |
| -(1(x),1(y)) | → | 0(-(x,y)) | (14) |
| not(false) | → | true | (15) |
| not(true) | → | false | (16) |
| and(x,true) | → | x | (17) |
| and(x,false) | → | false | (18) |
| if(true,x,y) | → | x | (19) |
| if(false,x,y) | → | y | (20) |
| ge(0(x),0(y)) | → | ge(x,y) | (21) |
| ge(0(x),1(y)) | → | not(ge(y,x)) | (22) |
| ge(1(x),0(y)) | → | ge(x,y) | (23) |
| ge(1(x),1(y)) | → | ge(x,y) | (24) |
| ge(x,#) | → | true | (25) |
| ge(#,1(x)) | → | false | (26) |
| ge(#,0(x)) | → | ge(#,x) | (27) |
| val(l(x)) | → | x | (28) |
| val(n(x,y,z)) | → | x | (29) |
| min(l(x)) | → | x | (30) |
| min(n(x,y,z)) | → | min(y) | (31) |
| max(l(x)) | → | x | (32) |
| max(n(x,y,z)) | → | max(z) | (33) |
| bs(l(x)) | → | true | (34) |
| bs(n(x,y,z)) | → | and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) | (35) |
| size(l(x)) | → | 1(#) | (36) |
| size(n(x,y,z)) | → | +(+(size(x),size(y)),1(#)) | (37) |
| wb(l(x)) | → | true | (38) |
| wb(n(x,y,z)) | → | and(if(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))),and(wb(y),wb(z))) | (39) |
| bs#(n(x,y,z)) | → | and#(ge(x,max(y)),ge(min(z),x)) | (40) |
| wb#(n(x,y,z)) | → | wb#(z) | (41) |
| wb#(n(x,y,z)) | → | if#(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))) | (42) |
| wb#(n(x,y,z)) | → | size#(y) | (43) |
| ge#(0(x),1(y)) | → | not#(ge(y,x)) | (44) |
| wb#(n(x,y,z)) | → | wb#(y) | (45) |
| wb#(n(x,y,z)) | → | and#(wb(y),wb(z)) | (46) |
| wb#(n(x,y,z)) | → | ge#(1(#),-(size(z),size(y))) | (47) |
| ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
| +#(0(x),0(y)) | → | +#(x,y) | (49) |
| ge#(#,0(x)) | → | ge#(#,x) | (50) |
| wb#(n(x,y,z)) | → | -#(size(z),size(y)) | (51) |
| bs#(n(x,y,z)) | → | min#(z) | (52) |
| wb#(n(x,y,z)) | → | size#(y) | (43) |
| +#(x,+(y,z)) | → | +#(x,y) | (53) |
| size#(n(x,y,z)) | → | size#(y) | (54) |
| bs#(n(x,y,z)) | → | bs#(z) | (55) |
| size#(n(x,y,z)) | → | +#(size(x),size(y)) | (56) |
| -#(1(x),1(y)) | → | -#(x,y) | (57) |
| -#(1(x),1(y)) | → | 0#(-(x,y)) | (58) |
| +#(0(x),1(y)) | → | +#(x,y) | (59) |
| size#(n(x,y,z)) | → | size#(x) | (60) |
| wb#(n(x,y,z)) | → | size#(y) | (43) |
| +#(1(x),0(y)) | → | +#(x,y) | (61) |
| wb#(n(x,y,z)) | → | ge#(size(y),size(z)) | (62) |
| +#(0(x),0(y)) | → | 0#(+(x,y)) | (63) |
| ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
| +#(1(x),1(y)) | → | 0#(+(+(x,y),1(#))) | (65) |
| -#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
| bs#(n(x,y,z)) | → | and#(bs(y),bs(z)) | (67) |
| wb#(n(x,y,z)) | → | size#(z) | (68) |
| size#(n(x,y,z)) | → | +#(+(size(x),size(y)),1(#)) | (69) |
| wb#(n(x,y,z)) | → | ge#(1(#),-(size(y),size(z))) | (70) |
| bs#(n(x,y,z)) | → | ge#(min(z),x) | (71) |
| max#(n(x,y,z)) | → | max#(z) | (72) |
| wb#(n(x,y,z)) | → | and#(if(ge(size(y),size(z)),ge(1(#),-(size(y),size(z))),ge(1(#),-(size(z),size(y)))),and(wb(y),wb(z))) | (73) |
| min#(n(x,y,z)) | → | min#(y) | (74) |
| wb#(n(x,y,z)) | → | -#(size(y),size(z)) | (75) |
| +#(1(x),1(y)) | → | +#(x,y) | (76) |
| -#(0(x),0(y)) | → | -#(x,y) | (77) |
| wb#(n(x,y,z)) | → | size#(z) | (68) |
| ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
| +#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
| wb#(n(x,y,z)) | → | size#(z) | (68) |
| -#(0(x),1(y)) | → | -#(x,y) | (80) |
| -#(0(x),0(y)) | → | 0#(-(x,y)) | (81) |
| bs#(n(x,y,z)) | → | ge#(x,max(y)) | (82) |
| bs#(n(x,y,z)) | → | and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) | (83) |
| bs#(n(x,y,z)) | → | bs#(y) | (84) |
| -#(1(x),0(y)) | → | -#(x,y) | (85) |
| bs#(n(x,y,z)) | → | max#(y) | (86) |
| +#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
| ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
The dependency pairs are split into 9 components.
| bs#(n(x,y,z)) | → | bs#(y) | (84) |
| bs#(n(x,y,z)) | → | bs#(z) | (55) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [n(x1, x2, x3)] | = | x2 + x3 + 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | x1 + 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| bs#(n(x,y,z)) | → | bs#(y) | (84) |
| bs#(n(x,y,z)) | → | bs#(z) | (55) |
The dependency pairs are split into 0 components.
| min#(n(x,y,z)) | → | min#(y) | (74) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [n(x1, x2, x3)] | = | x2 + 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | x1 + 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| min#(n(x,y,z)) | → | min#(y) | (74) |
The dependency pairs are split into 0 components.
| max#(n(x,y,z)) | → | max#(z) | (72) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [n(x1, x2, x3)] | = | x3 + 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | x1 + 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| max#(n(x,y,z)) | → | max#(z) | (72) |
The dependency pairs are split into 0 components.
| wb#(n(x,y,z)) | → | wb#(y) | (45) |
| wb#(n(x,y,z)) | → | wb#(z) | (41) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [n(x1, x2, x3)] | = | x2 + x3 + 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | x1 + 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| wb#(n(x,y,z)) | → | wb#(y) | (45) |
| wb#(n(x,y,z)) | → | wb#(z) | (41) |
The dependency pairs are split into 0 components.
| ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
| ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
| ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
| ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | x1 + 1 |
| [n(x1, x2, x3)] | = | 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | x1 + x2 + 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | x1 + 23676 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| ge#(1(x),1(y)) | → | ge#(x,y) | (88) |
| ge#(0(x),0(y)) | → | ge#(x,y) | (64) |
| ge#(1(x),0(y)) | → | ge#(x,y) | (78) |
| ge#(0(x),1(y)) | → | ge#(y,x) | (48) |
The dependency pairs are split into 0 components.
| ge#(#,0(x)) | → | ge#(#,x) | (50) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 1 |
| [n(x1, x2, x3)] | = | 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | x2 + 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | x1 + 23676 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| ge#(#,0(x)) | → | ge#(#,x) | (50) |
The dependency pairs are split into 0 components.
| size#(n(x,y,z)) | → | size#(x) | (60) |
| size#(n(x,y,z)) | → | size#(y) | (54) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 1 |
| [n(x1, x2, x3)] | = | x1 + x2 + 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | x1 + 0 |
| [0(x1)] | = | 23676 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 0 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| size#(n(x,y,z)) | → | size#(x) | (60) |
| size#(n(x,y,z)) | → | size#(y) | (54) |
The dependency pairs are split into 0 components.
| +#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
| +#(1(x),0(y)) | → | +#(x,y) | (61) |
| +#(0(x),1(y)) | → | +#(x,y) | (59) |
| +#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
| +#(x,+(y,z)) | → | +#(x,y) | (53) |
| +#(1(x),1(y)) | → | +#(x,y) | (76) |
| +#(0(x),0(y)) | → | +#(x,y) | (49) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | x1 + 1 |
| [n(x1, x2, x3)] | = | 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | x1 + 11798 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | x1 + x2 + 1 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | x2 + 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| +#(x,+(y,z)) | → | +#(+(x,y),z) | (87) |
| +#(1(x),0(y)) | → | +#(x,y) | (61) |
| +#(0(x),1(y)) | → | +#(x,y) | (59) |
| +#(x,+(y,z)) | → | +#(x,y) | (53) |
| +#(1(x),1(y)) | → | +#(x,y) | (76) |
| +#(0(x),0(y)) | → | +#(x,y) | (49) |
The dependency pairs are split into 1 component.
| +#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | x1 + 33955 |
| [n(x1, x2, x3)] | = | 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 0 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | x1 + 1 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | 0 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | x1 + x2 + 33954 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | x1 + x2 + 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| +(0(x),0(y)) | → | 0(+(x,y)) | (4) |
| +(x,+(y,z)) | → | +(+(x,y),z) | (8) |
| 0(#) | → | # | (1) |
| +(#,x) | → | x | (3) |
| +(0(x),1(y)) | → | 1(+(x,y)) | (5) |
| +(1(x),1(y)) | → | 0(+(+(x,y),1(#))) | (7) |
| +(1(x),0(y)) | → | 1(+(x,y)) | (6) |
| +(x,#) | → | x | (2) |
| +#(1(x),1(y)) | → | +#(+(x,y),1(#)) | (79) |
The dependency pairs are split into 0 components.
| -#(1(x),0(y)) | → | -#(x,y) | (85) |
| -#(1(x),1(y)) | → | -#(x,y) | (57) |
| -#(0(x),1(y)) | → | -#(x,y) | (80) |
| -#(0(x),0(y)) | → | -#(x,y) | (77) |
| -#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
| [val(x1)] | = | 0 |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | x1 + 2 |
| [n(x1, x2, x3)] | = | 1 |
| [and(x1, x2)] | = | 0 |
| [false] | = | 0 |
| [min#(x1)] | = | 0 |
| [l(x1)] | = | 0 |
| [ge#(x1, x2)] | = | 0 |
| [#] | = | 1 |
| [wb(x1)] | = | 0 |
| [true] | = | 0 |
| [not#(x1)] | = | 0 |
| [size#(x1)] | = | 0 |
| [0(x1)] | = | x1 + 4 |
| [if(x1, x2, x3)] | = | 0 |
| [ge(x1, x2)] | = | 0 |
| [max(x1)] | = | 0 |
| [max#(x1)] | = | 0 |
| [-(x1, x2)] | = | x1 + x2 + 1 |
| [bs(x1)] | = | 0 |
| [bs#(x1)] | = | 0 |
| [min(x1)] | = | 0 |
| [val#(x1)] | = | 0 |
| [-#(x1, x2)] | = | x1 + x2 + 0 |
| [if#(x1, x2, x3)] | = | 0 |
| [+(x1, x2)] | = | 35657 |
| [wb#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [and#(x1, x2)] | = | 0 |
| [not(x1)] | = | 0 |
| [size(x1)] | = | 0 |
| 0(#) | → | # | (1) |
| -(#,x) | → | # | (10) |
| -(1(x),1(y)) | → | 0(-(x,y)) | (14) |
| -(0(x),1(y)) | → | 1(-(-(x,y),1(#))) | (12) |
| -(0(x),0(y)) | → | 0(-(x,y)) | (11) |
| -(x,#) | → | x | (9) |
| -(1(x),0(y)) | → | 1(-(x,y)) | (13) |
| -#(1(x),0(y)) | → | -#(x,y) | (85) |
| -#(1(x),1(y)) | → | -#(x,y) | (57) |
| -#(0(x),1(y)) | → | -#(x,y) | (80) |
| -#(0(x),0(y)) | → | -#(x,y) | (77) |
| -#(0(x),1(y)) | → | -#(-(x,y),1(#)) | (66) |
The dependency pairs are split into 0 components.