Certification Problem

Input (TPDB TRS_Standard/Der95/20)

The rewrite relation of the following TRS is considered.

not(not(x)) x (1)
not(or(x,y)) and(not(not(not(x))),not(not(not(y)))) (2)
not(and(x,y)) or(not(not(not(x))),not(not(not(y)))) (3)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by NaTT @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
not#(or(x,y)) not#(not(x)) (4)
not#(or(x,y)) not#(y) (5)
not#(and(x,y)) not#(x) (6)
not#(and(x,y)) not#(not(y)) (7)
not#(and(x,y)) not#(y) (8)
not#(and(x,y)) not#(not(not(x))) (9)
not#(and(x,y)) not#(not(not(y))) (10)
not#(or(x,y)) not#(not(y)) (11)
not#(or(x,y)) not#(x) (12)
not#(or(x,y)) not#(not(not(x))) (13)
not#(and(x,y)) not#(not(x)) (14)
not#(or(x,y)) not#(not(not(y))) (15)

1.1 Dependency Graph Processor

The dependency pairs are split into 1 component.