Certification Problem
Input (TPDB TRS_Standard/Der95/20)
The rewrite relation of the following TRS is considered.
|
not(not(x)) |
→ |
x |
(1) |
|
not(or(x,y)) |
→ |
and(not(not(not(x))),not(not(not(y)))) |
(2) |
|
not(and(x,y)) |
→ |
or(not(not(not(x))),not(not(not(y)))) |
(3) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by NaTT @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
|
not#(or(x,y)) |
→ |
not#(not(x)) |
(4) |
|
not#(or(x,y)) |
→ |
not#(y) |
(5) |
|
not#(and(x,y)) |
→ |
not#(x) |
(6) |
|
not#(and(x,y)) |
→ |
not#(not(y)) |
(7) |
|
not#(and(x,y)) |
→ |
not#(y) |
(8) |
|
not#(and(x,y)) |
→ |
not#(not(not(x))) |
(9) |
|
not#(and(x,y)) |
→ |
not#(not(not(y))) |
(10) |
|
not#(or(x,y)) |
→ |
not#(not(y)) |
(11) |
|
not#(or(x,y)) |
→ |
not#(x) |
(12) |
|
not#(or(x,y)) |
→ |
not#(not(not(x))) |
(13) |
|
not#(and(x,y)) |
→ |
not#(not(x)) |
(14) |
|
not#(or(x,y)) |
→ |
not#(not(not(y))) |
(15) |
1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.