Certification Problem
Input (TPDB TRS_Standard/HirokawaMiddeldorp_04/t012)
The rewrite relation of the following TRS is considered.
|
minus(minus(x)) |
→ |
x |
(1) |
|
minus(+(x,y)) |
→ |
*(minus(minus(minus(x))),minus(minus(minus(y)))) |
(2) |
|
minus(*(x,y)) |
→ |
+(minus(minus(minus(x))),minus(minus(minus(y)))) |
(3) |
|
f(minus(x)) |
→ |
minus(minus(minus(f(x)))) |
(4) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by NaTT @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
|
minus#(+(x,y)) |
→ |
minus#(minus(x)) |
(5) |
|
minus#(+(x,y)) |
→ |
minus#(y) |
(6) |
|
f#(minus(x)) |
→ |
minus#(minus(minus(f(x)))) |
(7) |
|
minus#(*(x,y)) |
→ |
minus#(x) |
(8) |
|
minus#(*(x,y)) |
→ |
minus#(minus(y)) |
(9) |
|
minus#(*(x,y)) |
→ |
minus#(y) |
(10) |
|
f#(minus(x)) |
→ |
minus#(minus(f(x))) |
(11) |
|
minus#(*(x,y)) |
→ |
minus#(minus(minus(x))) |
(12) |
|
minus#(*(x,y)) |
→ |
minus#(minus(minus(y))) |
(13) |
|
minus#(+(x,y)) |
→ |
minus#(minus(y)) |
(14) |
|
f#(minus(x)) |
→ |
f#(x) |
(15) |
|
minus#(+(x,y)) |
→ |
minus#(x) |
(16) |
|
minus#(+(x,y)) |
→ |
minus#(minus(minus(x))) |
(17) |
|
minus#(*(x,y)) |
→ |
minus#(minus(x)) |
(18) |
|
f#(minus(x)) |
→ |
minus#(f(x)) |
(19) |
|
minus#(+(x,y)) |
→ |
minus#(minus(minus(y))) |
(20) |
1.1 Dependency Graph Processor
The dependency pairs are split into 2
components.