The rewrite relation of the following TRS is considered.
There are 108 ruless (increase limit for explicit display).
|
mult#(BIT1(m),BIT0(n)) |
→ |
plus#(BIT0(n),BIT0(BIT0(mult(m,n)))) |
(109) |
|
minus#(BIT0(m),BIT0(n)) |
→ |
BIT0#(minus(m,n)) |
(110) |
|
ODD#(NUMERAL(n)) |
→ |
ODD#(n) |
(111) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
mult#(BIT1(m),exp(BIT1(m),n)) |
(112) |
|
PRE#(BIT0(n)) |
→ |
eq#(n,0) |
(113) |
|
plus#(BIT0(m),BIT0(n)) |
→ |
BIT0#(plus(m,n)) |
(114) |
|
PRE#(NUMERAL(n)) |
→ |
NUMERAL#(PRE(n)) |
(115) |
|
exp#(NUMERAL(m),NUMERAL(n)) |
→ |
NUMERAL#(exp(m,n)) |
(116) |
|
lt#(BIT1(m),BIT1(n)) |
→ |
lt#(m,n) |
(117) |
|
SUC#(NUMERAL(n)) |
→ |
NUMERAL#(SUC(n)) |
(118) |
|
ge#(0,BIT0(n)) |
→ |
ge#(0,n) |
(119) |
|
plus#(NUMERAL(m),NUMERAL(n)) |
→ |
NUMERAL#(plus(m,n)) |
(120) |
|
lt#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(121) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
|
gt#(BIT0(n),0) |
→ |
gt#(n,0) |
(123) |
|
exp#(NUMERAL(m),NUMERAL(n)) |
→ |
exp#(m,n) |
(124) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
plus#(plus(BIT1(m),BIT0(n)),BIT0(BIT0(mult(m,n)))) |
(125) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
ge#(NUMERAL(n),NUMERAL(m)) |
→ |
ge#(n,m) |
(127) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
plus#(BIT0(m),BIT0(BIT0(mult(m,n)))) |
(128) |
|
le#(BIT0(m),BIT0(n)) |
→ |
le#(m,n) |
(129) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
mult#(m,n) |
(130) |
|
minus#(BIT1(m),BIT1(n)) |
→ |
minus#(m,n) |
(131) |
|
plus#(NUMERAL(m),NUMERAL(n)) |
→ |
plus#(m,n) |
(132) |
|
exp#(0,BIT0(n)) |
→ |
mult#(exp(0,n),exp(0,n)) |
(133) |
|
eq#(NUMERAL(m),NUMERAL(n)) |
→ |
eq#(m,n) |
(134) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
BIT0#(n) |
(135) |
|
PRE#(NUMERAL(n)) |
→ |
PRE#(n) |
(136) |
|
lt#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(137) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
mult#(exp(BIT0(m),n),exp(BIT0(m),n)) |
(138) |
|
minus#(BIT0(m),BIT1(n)) |
→ |
BIT0#(minus(m,n)) |
(139) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
|
le#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(141) |
|
EVEN#(NUMERAL(n)) |
→ |
EVEN#(n) |
(142) |
|
plus#(BIT0(m),BIT1(n)) |
→ |
plus#(m,n) |
(143) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
BIT0#(mult(m,n)) |
(144) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
BIT0#(BIT0(mult(m,n))) |
(145) |
|
mult#(NUMERAL(m),NUMERAL(n)) |
→ |
mult#(m,n) |
(146) |
|
SUC#(BIT1(n)) |
→ |
SUC#(n) |
(147) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
SUC#(BIT1(n)) |
→ |
BIT0#(SUC(n)) |
(148) |
|
mult#(BIT0(m),BIT0(n)) |
→ |
BIT0#(mult(m,n)) |
(149) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
mult#(m,n) |
(150) |
|
lt#(NUMERAL(m),NUMERAL(n)) |
→ |
lt#(m,n) |
(151) |
|
SUC#(NUMERAL(n)) |
→ |
SUC#(n) |
(152) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
mult#(BIT0(m),exp(BIT0(m),n)) |
(153) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
mult#(exp(BIT1(m),n),exp(BIT1(m),n)) |
(154) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
ge#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(156) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
BIT0#(BIT0(mult(m,n))) |
(157) |
|
le#(BIT1(m),BIT1(n)) |
→ |
le#(m,n) |
(158) |
|
mult#(BIT0(m),BIT0(n)) |
→ |
mult#(m,n) |
(159) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
|
plus#(BIT1(m),BIT1(n)) |
→ |
BIT0#(SUC(plus(m,n))) |
(160) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
minus#(BIT0(m),BIT1(n)) |
→ |
minus#(m,n) |
(161) |
|
gt#(NUMERAL(n),NUMERAL(m)) |
→ |
gt#(n,m) |
(162) |
|
le#(NUMERAL(m),NUMERAL(n)) |
→ |
le#(m,n) |
(163) |
|
lt#(BIT0(m),BIT0(n)) |
→ |
lt#(m,n) |
(164) |
|
ge#(BIT0(n),BIT0(m)) |
→ |
ge#(n,m) |
(165) |
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
|
gt#(BIT1(n),BIT1(m)) |
→ |
gt#(n,m) |
(167) |
|
gt#(BIT0(n),BIT0(m)) |
→ |
gt#(n,m) |
(168) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
|
mult#(NUMERAL(m),NUMERAL(n)) |
→ |
NUMERAL#(mult(m,n)) |
(169) |
|
plus#(BIT1(m),BIT1(n)) |
→ |
plus#(m,n) |
(170) |
|
minus#(BIT1(m),BIT0(n)) |
→ |
minus#(m,n) |
(171) |
|
PRE#(BIT1(n)) |
→ |
BIT0#(n) |
(172) |
|
mult#(BIT1(m),BIT0(n)) |
→ |
mult#(m,n) |
(173) |
|
gt#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(174) |
|
ge#(BIT1(n),BIT1(m)) |
→ |
ge#(n,m) |
(175) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
mult#(mult(BIT1(m),exp(BIT1(m),n)),exp(BIT1(m),n)) |
(176) |
|
le#(BIT0(n),0) |
→ |
le#(n,0) |
(177) |
|
eq#(BIT0(n),0) |
→ |
eq#(n,0) |
(178) |
|
plus#(BIT0(m),BIT0(n)) |
→ |
plus#(m,n) |
(179) |
|
minus#(BIT0(m),BIT0(n)) |
→ |
minus#(m,n) |
(180) |
|
le#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(181) |
|
minus#(BIT1(m),BIT1(n)) |
→ |
BIT0#(minus(m,n)) |
(182) |
|
gt#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(183) |
|
minus#(BIT1(m),BIT0(n)) |
→ |
le#(n,m) |
(184) |
|
eq#(0,BIT0(n)) |
→ |
eq#(0,n) |
(185) |
|
plus#(BIT1(m),BIT1(n)) |
→ |
SUC#(plus(m,n)) |
(186) |
|
eq#(BIT0(m),BIT0(n)) |
→ |
eq#(m,n) |
(187) |
|
plus#(BIT1(m),BIT0(n)) |
→ |
plus#(m,n) |
(188) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
mult#(mult(BIT0(m),exp(BIT0(m),n)),exp(BIT0(m),n)) |
(189) |
|
PRE#(BIT0(n)) |
→ |
PRE#(n) |
(190) |
|
eq#(BIT1(m),BIT1(n)) |
→ |
eq#(m,n) |
(191) |
|
minus#(NUMERAL(m),NUMERAL(n)) |
→ |
minus#(m,n) |
(192) |
|
mult#(BIT1(m),BIT0(n)) |
→ |
BIT0#(BIT0(mult(m,n))) |
(193) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
BIT0#(mult(m,n)) |
(194) |
|
ge#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(195) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
plus#(BIT1(m),BIT0(n)) |
(196) |
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
|
minus#(NUMERAL(m),NUMERAL(n)) |
→ |
NUMERAL#(minus(m,n)) |
(197) |
|
mult#(BIT1(m),BIT0(n)) |
→ |
BIT0#(mult(m,n)) |
(198) |
|
mult#(BIT0(m),BIT0(n)) |
→ |
BIT0#(BIT0(mult(m,n))) |
(199) |
|
minus#(BIT0(m),BIT1(n)) |
→ |
PRE#(BIT0(minus(m,n))) |
(200) |
|
lt#(0,BIT0(n)) |
→ |
lt#(0,n) |
(201) |
The dependency pairs are split into 19
components.
-
The
1st
component contains the
pair
|
EVEN#(NUMERAL(n)) |
→ |
EVEN#(n) |
(142) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
0 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
0 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
x1 + 0 |
| [BIT0(x1)] |
=
|
0 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
EVEN#(NUMERAL(n)) |
→ |
EVEN#(n) |
(142) |
could be deleted.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
2nd
component contains the
pair
|
eq#(BIT1(m),BIT1(n)) |
→ |
eq#(m,n) |
(191) |
|
eq#(BIT0(m),BIT0(n)) |
→ |
eq#(m,n) |
(187) |
|
eq#(NUMERAL(m),NUMERAL(n)) |
→ |
eq#(m,n) |
(134) |
1.1.2 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 30094 |
| [eq#(x1, x2)] |
=
|
x1 + x2 + 0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
0 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 14235 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
eq#(BIT1(m),BIT1(n)) |
→ |
eq#(m,n) |
(191) |
|
eq#(BIT0(m),BIT0(n)) |
→ |
eq#(m,n) |
(187) |
|
eq#(NUMERAL(m),NUMERAL(n)) |
→ |
eq#(m,n) |
(134) |
could be deleted.
1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
3rd
component contains the
pair
|
eq#(0,BIT0(n)) |
→ |
eq#(0,n) |
(185) |
1.1.3 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
30094 |
| [eq#(x1, x2)] |
=
|
x2 + 0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
0 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 14235 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
eq#(0,BIT0(n)) |
→ |
eq#(0,n) |
(185) |
could be deleted.
1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
4th
component contains the
pair
|
minus#(BIT0(m),BIT1(n)) |
→ |
minus#(m,n) |
(161) |
|
minus#(NUMERAL(m),NUMERAL(n)) |
→ |
minus#(m,n) |
(192) |
|
minus#(BIT1(m),BIT1(n)) |
→ |
minus#(m,n) |
(131) |
|
minus#(BIT0(m),BIT0(n)) |
→ |
minus#(m,n) |
(180) |
|
minus#(BIT1(m),BIT0(n)) |
→ |
minus#(m,n) |
(171) |
1.1.4 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
0 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
x1 + 0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
minus#(BIT0(m),BIT1(n)) |
→ |
minus#(m,n) |
(161) |
|
minus#(NUMERAL(m),NUMERAL(n)) |
→ |
minus#(m,n) |
(192) |
|
minus#(BIT1(m),BIT1(n)) |
→ |
minus#(m,n) |
(131) |
|
minus#(BIT0(m),BIT0(n)) |
→ |
minus#(m,n) |
(180) |
|
minus#(BIT1(m),BIT0(n)) |
→ |
minus#(m,n) |
(171) |
could be deleted.
1.1.4.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
5th
component contains the
pair
|
PRE#(BIT0(n)) |
→ |
PRE#(n) |
(190) |
|
PRE#(NUMERAL(n)) |
→ |
PRE#(n) |
(136) |
1.1.5 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
0 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
x1 + 0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
PRE#(BIT0(n)) |
→ |
PRE#(n) |
(190) |
|
PRE#(NUMERAL(n)) |
→ |
PRE#(n) |
(136) |
could be deleted.
1.1.5.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
6th
component contains the
pair
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
exp#(NUMERAL(m),NUMERAL(n)) |
→ |
exp#(m,n) |
(124) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
1.1.6 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
x2 + 0 |
| [NUMERAL(x1)] |
=
|
x1 + 1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
36466 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
exp#(BIT0(m),BIT1(n)) |
→ |
exp#(BIT0(m),n) |
(126) |
|
exp#(NUMERAL(m),NUMERAL(n)) |
→ |
exp#(m,n) |
(124) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
|
exp#(BIT0(m),BIT0(n)) |
→ |
exp#(BIT0(m),n) |
(122) |
could be deleted.
1.1.6.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
7th
component contains the
pair
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
1.1.7 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
x2 + 0 |
| [NUMERAL(x1)] |
=
|
1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
|
exp#(BIT1(m),BIT1(n)) |
→ |
exp#(BIT1(m),n) |
(155) |
|
exp#(BIT1(m),BIT0(n)) |
→ |
exp#(BIT1(m),n) |
(140) |
could be deleted.
1.1.7.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
8th
component contains the
pair
|
gt#(NUMERAL(n),NUMERAL(m)) |
→ |
gt#(n,m) |
(162) |
|
ge#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(156) |
|
ge#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(195) |
|
gt#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(183) |
|
ge#(NUMERAL(n),NUMERAL(m)) |
→ |
ge#(n,m) |
(127) |
|
ge#(BIT1(n),BIT1(m)) |
→ |
ge#(n,m) |
(175) |
|
gt#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(174) |
|
gt#(BIT0(n),BIT0(m)) |
→ |
gt#(n,m) |
(168) |
|
gt#(BIT1(n),BIT1(m)) |
→ |
gt#(n,m) |
(167) |
|
ge#(BIT0(n),BIT0(m)) |
→ |
ge#(n,m) |
(165) |
1.1.8 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
x1 + x2 + 0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
35657 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
x1 + x2 + 0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
gt#(NUMERAL(n),NUMERAL(m)) |
→ |
gt#(n,m) |
(162) |
|
ge#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(156) |
|
ge#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(195) |
|
gt#(BIT0(n),BIT1(m)) |
→ |
gt#(n,m) |
(183) |
|
ge#(NUMERAL(n),NUMERAL(m)) |
→ |
ge#(n,m) |
(127) |
|
ge#(BIT1(n),BIT1(m)) |
→ |
ge#(n,m) |
(175) |
|
gt#(BIT1(n),BIT0(m)) |
→ |
ge#(n,m) |
(174) |
|
gt#(BIT0(n),BIT0(m)) |
→ |
gt#(n,m) |
(168) |
|
gt#(BIT1(n),BIT1(m)) |
→ |
gt#(n,m) |
(167) |
|
ge#(BIT0(n),BIT0(m)) |
→ |
ge#(n,m) |
(165) |
could be deleted.
1.1.8.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
9th
component contains the
pair
|
ge#(0,BIT0(n)) |
→ |
ge#(0,n) |
(119) |
1.1.9 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
x2 + 0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
35657 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
ge#(0,BIT0(n)) |
→ |
ge#(0,n) |
(119) |
could be deleted.
1.1.9.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
10th
component contains the
pair
|
gt#(BIT0(n),0) |
→ |
gt#(n,0) |
(123) |
1.1.10 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
x1 + 0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
gt#(BIT0(n),0) |
→ |
gt#(n,0) |
(123) |
could be deleted.
1.1.10.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
11th
component contains the
pair
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
1.1.11 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
x2 + 0 |
| [NUMERAL(x1)] |
=
|
1 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
|
exp#(0,BIT0(n)) |
→ |
exp#(0,n) |
(166) |
could be deleted.
1.1.11.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
12th
component contains the
pair
|
eq#(BIT0(n),0) |
→ |
eq#(n,0) |
(178) |
1.1.12 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
1 |
| [eq#(x1, x2)] |
=
|
x1 + 0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
eq#(BIT0(n),0) |
→ |
eq#(n,0) |
(178) |
could be deleted.
1.1.12.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
13th
component contains the
pair
|
mult#(BIT0(m),BIT0(n)) |
→ |
mult#(m,n) |
(159) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
mult#(m,n) |
(150) |
|
mult#(NUMERAL(m),NUMERAL(n)) |
→ |
mult#(m,n) |
(146) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
mult#(m,n) |
(130) |
|
mult#(BIT1(m),BIT0(n)) |
→ |
mult#(m,n) |
(173) |
1.1.13 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 61160 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 11966 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
x1 + x2 + 0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
mult#(BIT0(m),BIT0(n)) |
→ |
mult#(m,n) |
(159) |
|
mult#(BIT0(m),BIT1(n)) |
→ |
mult#(m,n) |
(150) |
|
mult#(NUMERAL(m),NUMERAL(n)) |
→ |
mult#(m,n) |
(146) |
|
mult#(BIT1(m),BIT1(n)) |
→ |
mult#(m,n) |
(130) |
|
mult#(BIT1(m),BIT0(n)) |
→ |
mult#(m,n) |
(173) |
could be deleted.
1.1.13.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
14th
component contains the
pair
|
ODD#(NUMERAL(n)) |
→ |
ODD#(n) |
(111) |
1.1.14 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 61160 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
x1 + 0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 11966 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
ODD#(NUMERAL(n)) |
→ |
ODD#(n) |
(111) |
could be deleted.
1.1.14.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
15th
component contains the
pair
|
plus#(BIT1(m),BIT0(n)) |
→ |
plus#(m,n) |
(188) |
|
plus#(BIT0(m),BIT1(n)) |
→ |
plus#(m,n) |
(143) |
|
plus#(NUMERAL(m),NUMERAL(n)) |
→ |
plus#(m,n) |
(132) |
|
plus#(BIT0(m),BIT0(n)) |
→ |
plus#(m,n) |
(179) |
|
plus#(BIT1(m),BIT1(n)) |
→ |
plus#(m,n) |
(170) |
1.1.15 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
x1 + x2 + 0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 29525 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 44849 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
plus#(BIT1(m),BIT0(n)) |
→ |
plus#(m,n) |
(188) |
|
plus#(BIT0(m),BIT1(n)) |
→ |
plus#(m,n) |
(143) |
|
plus#(NUMERAL(m),NUMERAL(n)) |
→ |
plus#(m,n) |
(132) |
|
plus#(BIT0(m),BIT0(n)) |
→ |
plus#(m,n) |
(179) |
|
plus#(BIT1(m),BIT1(n)) |
→ |
plus#(m,n) |
(170) |
could be deleted.
1.1.15.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
16th
component contains the
pair
|
SUC#(NUMERAL(n)) |
→ |
SUC#(n) |
(152) |
|
SUC#(BIT1(n)) |
→ |
SUC#(n) |
(147) |
1.1.16 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
0 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 29525 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
x1 + 0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 44849 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
SUC#(NUMERAL(n)) |
→ |
SUC#(n) |
(152) |
|
SUC#(BIT1(n)) |
→ |
SUC#(n) |
(147) |
could be deleted.
1.1.16.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
17th
component contains the
pair
|
le#(NUMERAL(m),NUMERAL(n)) |
→ |
le#(m,n) |
(163) |
|
le#(BIT1(m),BIT1(n)) |
→ |
le#(m,n) |
(158) |
|
lt#(NUMERAL(m),NUMERAL(n)) |
→ |
lt#(m,n) |
(151) |
|
le#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(141) |
|
lt#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(137) |
|
le#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(181) |
|
le#(BIT0(m),BIT0(n)) |
→ |
le#(m,n) |
(129) |
|
lt#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(121) |
|
lt#(BIT1(m),BIT1(n)) |
→ |
lt#(m,n) |
(117) |
|
lt#(BIT0(m),BIT0(n)) |
→ |
lt#(m,n) |
(164) |
1.1.17 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
x1 + 1 |
| [le#(x1, x2)] |
=
|
x1 + x2 + 0 |
| [lt#(x1, x2)] |
=
|
x1 + x2 + 1 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
x1 + 29525 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pairs
|
le#(NUMERAL(m),NUMERAL(n)) |
→ |
le#(m,n) |
(163) |
|
le#(BIT1(m),BIT1(n)) |
→ |
le#(m,n) |
(158) |
|
lt#(NUMERAL(m),NUMERAL(n)) |
→ |
lt#(m,n) |
(151) |
|
le#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(141) |
|
lt#(BIT0(m),BIT1(n)) |
→ |
le#(m,n) |
(137) |
|
le#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(181) |
|
le#(BIT0(m),BIT0(n)) |
→ |
le#(m,n) |
(129) |
|
lt#(BIT1(m),BIT0(n)) |
→ |
lt#(m,n) |
(121) |
|
lt#(BIT1(m),BIT1(n)) |
→ |
lt#(m,n) |
(117) |
|
lt#(BIT0(m),BIT0(n)) |
→ |
lt#(m,n) |
(164) |
could be deleted.
1.1.17.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
18th
component contains the
pair
|
le#(BIT0(n),0) |
→ |
le#(n,0) |
(177) |
1.1.18 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
x1 + 0 |
| [lt#(x1, x2)] |
=
|
1 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
29525 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
le#(BIT0(n),0) |
→ |
le#(n,0) |
(177) |
could be deleted.
1.1.18.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
19th
component contains the
pair
|
lt#(0,BIT0(n)) |
→ |
lt#(0,n) |
(201) |
1.1.19 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
| [le(x1, x2)] |
=
|
0 |
| [ODD(x1)] |
=
|
0 |
| [BIT1(x1)] |
=
|
1 |
| [le#(x1, x2)] |
=
|
0 |
| [lt#(x1, x2)] |
=
|
x2 + 1 |
| [EVEN(x1)] |
=
|
0 |
| [gt(x1, x2)] |
=
|
0 |
| [minus(x1, x2)] |
=
|
0 |
| [T] |
=
|
0 |
| [F] |
=
|
0 |
| [plus#(x1, x2)] |
=
|
0 |
| [eq(x1, x2)] |
=
|
0 |
| [ge#(x1, x2)] |
=
|
0 |
| [exp#(x1, x2)] |
=
|
0 |
| [NUMERAL(x1)] |
=
|
29525 |
| [eq#(x1, x2)] |
=
|
0 |
| [mult(x1, x2)] |
=
|
0 |
| [ODD#(x1)] |
=
|
0 |
| [0] |
=
|
1 |
| [if(x1, x2, x3)] |
=
|
0 |
| [ge(x1, x2)] |
=
|
0 |
| [NUMERAL#(x1)] |
=
|
0 |
| [SUC#(x1)] |
=
|
0 |
| [BIT0#(x1)] |
=
|
0 |
| [gt#(x1, x2)] |
=
|
0 |
| [PRE(x1)] |
=
|
0 |
| [minus#(x1, x2)] |
=
|
0 |
| [plus(x1, x2)] |
=
|
0 |
| [EVEN#(x1)] |
=
|
0 |
| [BIT0(x1)] |
=
|
x1 + 1 |
| [exp(x1, x2)] |
=
|
0 |
| [PRE#(x1)] |
=
|
0 |
| [SUC(x1)] |
=
|
0 |
| [lt(x1, x2)] |
=
|
0 |
| [mult#(x1, x2)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
|
lt#(0,BIT0(n)) |
→ |
lt#(0,n) |
(201) |
could be deleted.
1.1.19.1 Dependency Graph Processor
The dependency pairs are split into 0
components.