The rewrite relation of the following TRS is considered.
prime(0) | → | false | (1) |
prime(s(0)) | → | false | (2) |
prime(s(s(x))) | → | prime1(s(s(x)),s(x)) | (3) |
prime1(x,0) | → | false | (4) |
prime1(x,s(0)) | → | true | (5) |
prime1(x,s(s(y))) | → | and(not(divp(s(s(y)),x)),prime1(x,s(y))) | (6) |
divp(x,y) | → | =(rem(x,y),0) | (7) |
prime1#(x,s(s(y))) | → | prime1#(x,s(y)) | (8) |
prime#(s(s(x))) | → | prime1#(s(s(x)),s(x)) | (9) |
prime1#(x,s(s(y))) | → | divp#(s(s(y)),x) | (10) |
The dependency pairs are split into 1 component.
prime1#(x,s(s(y))) | → | prime1#(x,s(y)) | (8) |
[s(x1)] | = | x1 + 1 |
[prime(x1)] | = | 0 |
[and(x1, x2)] | = | 0 |
[false] | = | 0 |
[true] | = | 0 |
[prime#(x1)] | = | 0 |
[0] | = | 0 |
[=(x1, x2)] | = | 0 |
[prime1#(x1, x2)] | = | x2 + 0 |
[prime1(x1, x2)] | = | 0 |
[rem(x1, x2)] | = | 0 |
[divp#(x1, x2)] | = | 0 |
[divp(x1, x2)] | = | 0 |
[not(x1)] | = | 0 |
prime1#(x,s(s(y))) | → | prime1#(x,s(y)) | (8) |
The dependency pairs are split into 0 components.