The rewrite relation of the following TRS is considered.
f(x,0,0) | → | s(x) | (1) |
f(0,y,0) | → | s(y) | (2) |
f(0,0,z) | → | s(z) | (3) |
f(s(0),y,z) | → | f(0,s(y),s(z)) | (4) |
f(s(x),s(y),0) | → | f(x,y,s(0)) | (5) |
f(s(x),0,s(z)) | → | f(x,s(0),z) | (6) |
f(0,s(0),s(0)) | → | s(s(0)) | (7) |
f(s(x),s(y),s(z)) | → | f(x,y,f(s(x),s(y),z)) | (8) |
f(0,s(s(y)),s(0)) | → | f(0,y,s(0)) | (9) |
f(0,s(0),s(s(z))) | → | f(0,s(0),z) | (10) |
f(0,s(s(y)),s(s(z))) | → | f(0,y,f(0,s(s(y)),s(z))) | (11) |
f#(0,s(s(y)),s(0)) | → | f#(0,y,s(0)) | (12) |
f#(s(x),s(y),0) | → | f#(x,y,s(0)) | (13) |
f#(s(0),y,z) | → | f#(0,s(y),s(z)) | (14) |
f#(s(x),s(y),s(z)) | → | f#(x,y,f(s(x),s(y),z)) | (15) |
f#(0,s(0),s(s(z))) | → | f#(0,s(0),z) | (16) |
f#(0,s(s(y)),s(s(z))) | → | f#(0,y,f(0,s(s(y)),s(z))) | (17) |
f#(s(x),0,s(z)) | → | f#(x,s(0),z) | (18) |
f#(s(x),s(y),s(z)) | → | f#(s(x),s(y),z) | (19) |
f#(0,s(s(y)),s(s(z))) | → | f#(0,s(s(y)),s(z)) | (20) |
The dependency pairs are split into 4 components.
f#(s(x),s(y),s(z)) | → | f#(s(x),s(y),z) | (19) |
f#(s(x),0,s(z)) | → | f#(x,s(0),z) | (18) |
f#(s(x),s(y),0) | → | f#(x,y,s(0)) | (13) |
f#(s(x),s(y),s(z)) | → | f#(x,y,f(s(x),s(y),z)) | (15) |
[s(x1)] | = | x1 + 2 |
[f(x1, x2, x3)] | = | 1 |
[0] | = | 1 |
[f#(x1, x2, x3)] | = | x1 + 0 |
f#(s(x),0,s(z)) | → | f#(x,s(0),z) | (18) |
f#(s(x),s(y),0) | → | f#(x,y,s(0)) | (13) |
f#(s(x),s(y),s(z)) | → | f#(x,y,f(s(x),s(y),z)) | (15) |
The dependency pairs are split into 1 component.
f#(s(x),s(y),s(z)) | → | f#(s(x),s(y),z) | (19) |
[s(x1)] | = | x1 + 1 |
[f(x1, x2, x3)] | = | max(0) |
[0] | = | 0 |
[f#(x1, x2, x3)] | = | max(x3 + 1, 0) |
f#(s(x),s(y),s(z)) | → | f#(s(x),s(y),z) | (19) |
The dependency pairs are split into 0 components.
f#(0,s(s(y)),s(s(z))) | → | f#(0,s(s(y)),s(z)) | (20) |
f#(0,s(s(y)),s(s(z))) | → | f#(0,y,f(0,s(s(y)),s(z))) | (17) |
[s(x1)] | = | x1 + 2 |
[f(x1, x2, x3)] | = | x2 + 0 |
[0] | = | 1 |
[f#(x1, x2, x3)] | = | x2 + 0 |
f#(0,s(s(y)),s(s(z))) | → | f#(0,y,f(0,s(s(y)),s(z))) | (17) |
The dependency pairs are split into 1 component.
f#(0,s(s(y)),s(s(z))) | → | f#(0,s(s(y)),s(z)) | (20) |
[s(x1)] | = | x1 + 10452 |
[f(x1, x2, x3)] | = | max(0) |
[0] | = | 0 |
[f#(x1, x2, x3)] | = | max(x1 + 20903, x3 + 0, 0) |
f#(0,s(s(y)),s(s(z))) | → | f#(0,s(s(y)),s(z)) | (20) |
The dependency pairs are split into 0 components.
f#(0,s(0),s(s(z))) | → | f#(0,s(0),z) | (16) |
[s(x1)] | = | x1 + 4 |
[f(x1, x2, x3)] | = | max(0) |
[0] | = | 1 |
[f#(x1, x2, x3)] | = | max(x1 + 28106, x2 + 28100, x3 + 28101, 0) |
f#(0,s(0),s(s(z))) | → | f#(0,s(0),z) | (16) |
The dependency pairs are split into 0 components.
f#(0,s(s(y)),s(0)) | → | f#(0,y,s(0)) | (12) |
[s(x1)] | = | x1 + 2 |
[f(x1, x2, x3)] | = | x2 + 0 |
[0] | = | 1 |
[f#(x1, x2, x3)] | = | x2 + 0 |
f#(0,s(s(y)),s(0)) | → | f#(0,y,s(0)) | (12) |
The dependency pairs are split into 0 components.