The rewrite relation of the following TRS is considered.
f(j(x,y),y) | → | g(f(x,k(y))) | (1) |
f(x,h1(y,z)) | → | h2(0,x,h1(y,z)) | (2) |
g(h2(x,y,h1(z,u))) | → | h2(s(x),y,h1(z,u)) | (3) |
h2(x,j(y,h1(z,u)),h1(z,u)) | → | h2(s(x),y,h1(s(z),u)) | (4) |
i(f(x,h(y))) | → | y | (5) |
i(h2(s(x),y,h1(x,z))) | → | z | (6) |
k(h(x)) | → | h1(0,x) | (7) |
k(h1(x,y)) | → | h1(s(x),y) | (8) |
g#(h2(x,y,h1(z,u))) | → | h2#(s(x),y,h1(z,u)) | (9) |
h2#(x,j(y,h1(z,u)),h1(z,u)) | → | h2#(s(x),y,h1(s(z),u)) | (10) |
f#(j(x,y),y) | → | k#(y) | (11) |
f#(j(x,y),y) | → | g#(f(x,k(y))) | (12) |
f#(x,h1(y,z)) | → | h2#(0,x,h1(y,z)) | (13) |
f#(j(x,y),y) | → | f#(x,k(y)) | (14) |
The dependency pairs are split into 2 components.
f#(j(x,y),y) | → | f#(x,k(y)) | (14) |
[h(x1)] | = | 1 |
[s(x1)] | = | 1 |
[k(x1)] | = | 28959 |
[h2#(x1, x2, x3)] | = | 0 |
[f(x1, x2)] | = | 0 |
[0] | = | 28958 |
[k#(x1)] | = | 0 |
[f#(x1, x2)] | = | x1 + x2 + 0 |
[g#(x1)] | = | 0 |
[j(x1, x2)] | = | x1 + 28960 |
[h1(x1, x2)] | = | x1 + 1 |
[i(x1)] | = | 0 |
[h2(x1, x2, x3)] | = | 0 |
[g(x1)] | = | 0 |
[i#(x1)] | = | 0 |
k(h1(x,y)) | → | h1(s(x),y) | (8) |
k(h(x)) | → | h1(0,x) | (7) |
f#(j(x,y),y) | → | f#(x,k(y)) | (14) |
The dependency pairs are split into 0 components.
h2#(x,j(y,h1(z,u)),h1(z,u)) | → | h2#(s(x),y,h1(s(z),u)) | (10) |
[h(x1)] | = | 1 |
[s(x1)] | = | 1 |
[k(x1)] | = | 28959 |
[h2#(x1, x2, x3)] | = | x1 + x2 + x3 + 0 |
[f(x1, x2)] | = | 0 |
[0] | = | 28958 |
[k#(x1)] | = | 0 |
[f#(x1, x2)] | = | x2 + 0 |
[g#(x1)] | = | 0 |
[j(x1, x2)] | = | x1 + x2 + 2 |
[h1(x1, x2)] | = | x1 + 1 |
[i(x1)] | = | 0 |
[h2(x1, x2, x3)] | = | 0 |
[g(x1)] | = | 0 |
[i#(x1)] | = | 0 |
k(h1(x,y)) | → | h1(s(x),y) | (8) |
k(h(x)) | → | h1(0,x) | (7) |
h2#(x,j(y,h1(z,u)),h1(z,u)) | → | h2#(s(x),y,h1(s(z),u)) | (10) |
The dependency pairs are split into 0 components.