The rewrite relation of the following TRS is considered.
| *(x,1) | → | x | (1) |
| *(1,y) | → | y | (2) |
| *(i(x),x) | → | 1 | (3) |
| *(x,i(x)) | → | 1 | (4) |
| *(x,*(y,z)) | → | *(*(x,y),z) | (5) |
| i(1) | → | 1 | (6) |
| *(*(x,y),i(y)) | → | x | (7) |
| *(*(x,i(y)),y) | → | x | (8) |
| i(i(x)) | → | x | (9) |
| i(*(x,y)) | → | *(i(y),i(x)) | (10) |
| k(x,1) | → | 1 | (11) |
| k(x,x) | → | 1 | (12) |
| *(k(x,y),k(y,x)) | → | 1 | (13) |
| *(*(i(x),k(y,z)),x) | → | k(*(*(i(x),y),x),*(*(i(x),z),x)) | (14) |
| k(*(x,i(y)),*(y,i(x))) | → | 1 | (15) |
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),y),x) | (16) |
| i#(*(x,y)) | → | *#(i(y),i(x)) | (17) |
| *#(x,*(y,z)) | → | *#(*(x,y),z) | (18) |
| i#(*(x,y)) | → | i#(y) | (19) |
| *#(x,*(y,z)) | → | *#(x,y) | (20) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),z) | (21) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),y) | (22) |
| *#(*(i(x),k(y,z)),x) | → | k#(*(*(i(x),y),x),*(*(i(x),z),x)) | (23) |
| i#(*(x,y)) | → | i#(x) | (24) |
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),z),x) | (25) |
The dependency pairs are split into 2 components.
| i#(*(x,y)) | → | i#(x) | (24) |
| i#(*(x,y)) | → | i#(y) | (19) |
| [1] | = | 0 |
| [k(x1, x2)] | = | 0 |
| [*#(x1, x2)] | = | 0 |
| [k#(x1, x2)] | = | 0 |
| [i(x1)] | = | 0 |
| [*(x1, x2)] | = | x1 + x2 + 1 |
| [i#(x1)] | = | x1 + 0 |
| i#(*(x,y)) | → | i#(x) | (24) |
| i#(*(x,y)) | → | i#(y) | (19) |
The dependency pairs are split into 0 components.
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),z),x) | (25) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),y) | (22) |
| *#(x,*(y,z)) | → | *#(*(x,y),z) | (18) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),z) | (21) |
| *#(x,*(y,z)) | → | *#(x,y) | (20) |
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),y),x) | (16) |
| prec(1) | = | 0 | status(1) | = | [] | list-extension(1) | = | Lex | ||
| prec(k) | = | 0 | status(k) | = | [2, 1] | list-extension(k) | = | Lex | ||
| prec(*#) | = | 1 | status(*#) | = | [2, 1] | list-extension(*#) | = | Lex | ||
| prec(k#) | = | 0 | status(k#) | = | [2, 1] | list-extension(k#) | = | Lex | ||
| prec(i) | = | 2 | status(i) | = | [1] | list-extension(i) | = | Lex | ||
| prec(*) | = | 1 | status(*) | = | [2, 1] | list-extension(*) | = | Lex | ||
| prec(i#) | = | 0 | status(i#) | = | [] | list-extension(i#) | = | Lex |
| [1] | = | 0 |
| [k(x1, x2)] | = | max(x1 + 0, x2 + 0, 0) |
| [*#(x1, x2)] | = | max(x1 + 0, x2 + 0, 0) |
| [k#(x1, x2)] | = | max(x1 + 0, x2 + 0, 0) |
| [i(x1)] | = | x1 + 0 |
| [*(x1, x2)] | = | max(x1 + 0, x2 + 0, 0) |
| [i#(x1)] | = | 0 |
| *(x,i(x)) | → | 1 | (4) |
| k(*(x,i(y)),*(y,i(x))) | → | 1 | (15) |
| *(*(x,i(y)),y) | → | x | (8) |
| *(x,1) | → | x | (1) |
| *(i(x),x) | → | 1 | (3) |
| *(x,*(y,z)) | → | *(*(x,y),z) | (5) |
| i(*(x,y)) | → | *(i(y),i(x)) | (10) |
| *(*(x,y),i(y)) | → | x | (7) |
| *(*(i(x),k(y,z)),x) | → | k(*(*(i(x),y),x),*(*(i(x),z),x)) | (14) |
| k(x,x) | → | 1 | (12) |
| k(x,1) | → | 1 | (11) |
| i(i(x)) | → | x | (9) |
| *(k(x,y),k(y,x)) | → | 1 | (13) |
| i(1) | → | 1 | (6) |
| *(1,y) | → | y | (2) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),y) | (22) |
| *#(x,*(y,z)) | → | *#(*(x,y),z) | (18) |
| *#(*(i(x),k(y,z)),x) | → | *#(i(x),z) | (21) |
| *#(x,*(y,z)) | → | *#(x,y) | (20) |
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),y),x) | (16) |
The dependency pairs are split into 1 component.
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),z),x) | (25) |
| [1] | = | 1 |
| [k(x1, x2)] | = | x2 + 2438 |
| [*#(x1, x2)] | = | x1 + 0 |
| [k#(x1, x2)] | = | 0 |
| [i(x1)] | = | x1 + 0 |
| [*(x1, x2)] | = | x1 + x2 + 20653 |
| [i#(x1)] | = | 0 |
| *(x,i(x)) | → | 1 | (4) |
| k(*(x,i(y)),*(y,i(x))) | → | 1 | (15) |
| *(*(x,i(y)),y) | → | x | (8) |
| *(x,1) | → | x | (1) |
| *(i(x),x) | → | 1 | (3) |
| *(x,*(y,z)) | → | *(*(x,y),z) | (5) |
| i(*(x,y)) | → | *(i(y),i(x)) | (10) |
| *(*(x,y),i(y)) | → | x | (7) |
| *(*(i(x),k(y,z)),x) | → | k(*(*(i(x),y),x),*(*(i(x),z),x)) | (14) |
| k(x,x) | → | 1 | (12) |
| k(x,1) | → | 1 | (11) |
| i(i(x)) | → | x | (9) |
| *(k(x,y),k(y,x)) | → | 1 | (13) |
| i(1) | → | 1 | (6) |
| *(1,y) | → | y | (2) |
| *#(*(i(x),k(y,z)),x) | → | *#(*(i(x),z),x) | (25) |
The dependency pairs are split into 0 components.