The rewrite relation of the following TRS is considered.
| a(b(x)) | → | b(a(a(x))) | (1) |
| b(c(x)) | → | c(b(b(x))) | (2) |
| c(a(x)) | → | a(c(c(x))) | (3) |
| u(a(x)) | → | x | (4) |
| v(b(x)) | → | x | (5) |
| w(c(x)) | → | x | (6) |
| a(u(x)) | → | x | (7) |
| b(v(x)) | → | x | (8) |
| c(w(x)) | → | x | (9) |
| b#(c(x)) | → | b#(b(x)) | (10) |
| c#(a(x)) | → | c#(x) | (11) |
| a#(b(x)) | → | a#(x) | (12) |
| a#(b(x)) | → | b#(a(a(x))) | (13) |
| c#(a(x)) | → | c#(c(x)) | (14) |
| b#(c(x)) | → | b#(x) | (15) |
| b#(c(x)) | → | c#(b(b(x))) | (16) |
| a#(b(x)) | → | a#(a(x)) | (17) |
| c#(a(x)) | → | a#(c(c(x))) | (18) |
The dependency pairs are split into 1 component.
| c#(a(x)) | → | a#(c(c(x))) | (18) |
| a#(b(x)) | → | a#(a(x)) | (17) |
| b#(c(x)) | → | c#(b(b(x))) | (16) |
| b#(c(x)) | → | b#(x) | (15) |
| a#(b(x)) | → | a#(x) | (12) |
| c#(a(x)) | → | c#(x) | (11) |
| c#(a(x)) | → | c#(c(x)) | (14) |
| a#(b(x)) | → | b#(a(a(x))) | (13) |
| b#(c(x)) | → | b#(b(x)) | (10) |
| π(b) | = | 1 |
| π(b#) | = | 1 |
| prec(a) | = | 0 | status(a) | = | [] | list-extension(a) | = | Lex | ||
| prec(v) | = | 0 | status(v) | = | [] | list-extension(v) | = | Lex | ||
| prec(w#) | = | 0 | status(w#) | = | [] | list-extension(w#) | = | Lex | ||
| prec(u) | = | 0 | status(u) | = | [] | list-extension(u) | = | Lex | ||
| prec(u#) | = | 0 | status(u#) | = | [] | list-extension(u#) | = | Lex | ||
| prec(w) | = | 0 | status(w) | = | [] | list-extension(w) | = | Lex | ||
| prec(c) | = | 3 | status(c) | = | [1] | list-extension(c) | = | Lex | ||
| prec(v#) | = | 0 | status(v#) | = | [] | list-extension(v#) | = | Lex | ||
| prec(c#) | = | 2 | status(c#) | = | [] | list-extension(c#) | = | Lex | ||
| prec(a#) | = | 1 | status(a#) | = | [] | list-extension(a#) | = | Lex |
| [a(x1)] | = | x1 + 0 |
| [v(x1)] | = | x1 + 1 |
| [w#(x1)] | = | 1 |
| [u(x1)] | = | x1 + 10451 |
| [u#(x1)] | = | 1 |
| [w(x1)] | = | x1 + 30613 |
| [c(x1)] | = | x1 + 0 |
| [v#(x1)] | = | 1 |
| [c#(x1)] | = | x1 + 0 |
| [a#(x1)] | = | x1 + 0 |
| b(v(x)) | → | x | (8) |
| a(b(x)) | → | b(a(a(x))) | (1) |
| c(a(x)) | → | a(c(c(x))) | (3) |
| a(u(x)) | → | x | (7) |
| c(w(x)) | → | x | (9) |
| b(c(x)) | → | c(b(b(x))) | (2) |
| c#(a(x)) | → | a#(c(c(x))) | (18) |
| b#(c(x)) | → | c#(b(b(x))) | (16) |
| b#(c(x)) | → | b#(x) | (15) |
| a#(b(x)) | → | b#(a(a(x))) | (13) |
| b#(c(x)) | → | b#(b(x)) | (10) |
The dependency pairs are split into 2 components.
| a#(b(x)) | → | a#(x) | (12) |
| a#(b(x)) | → | a#(a(x)) | (17) |
| π(a) | = | 1 |
| π(b#) | = | 1 |
| prec(v) | = | 0 | status(v) | = | [] | list-extension(v) | = | Lex | ||
| prec(w#) | = | 0 | status(w#) | = | [] | list-extension(w#) | = | Lex | ||
| prec(b) | = | 3 | status(b) | = | [1] | list-extension(b) | = | Lex | ||
| prec(u) | = | 0 | status(u) | = | [] | list-extension(u) | = | Lex | ||
| prec(u#) | = | 0 | status(u#) | = | [] | list-extension(u#) | = | Lex | ||
| prec(w) | = | 0 | status(w) | = | [1] | list-extension(w) | = | Lex | ||
| prec(c) | = | 3 | status(c) | = | [] | list-extension(c) | = | Lex | ||
| prec(v#) | = | 0 | status(v#) | = | [] | list-extension(v#) | = | Lex | ||
| prec(c#) | = | 2 | status(c#) | = | [] | list-extension(c#) | = | Lex | ||
| prec(a#) | = | 1 | status(a#) | = | [1] | list-extension(a#) | = | Lex |
| [v(x1)] | = | x1 + 1 |
| [w#(x1)] | = | 1 |
| [b(x1)] | = | x1 + 0 |
| [u(x1)] | = | x1 + 28101 |
| [u#(x1)] | = | 1 |
| [w(x1)] | = | x1 + 1143 |
| [c(x1)] | = | x1 + 0 |
| [v#(x1)] | = | 1 |
| [c#(x1)] | = | x1 + 0 |
| [a#(x1)] | = | x1 + 0 |
| b(v(x)) | → | x | (8) |
| a(b(x)) | → | b(a(a(x))) | (1) |
| c(a(x)) | → | a(c(c(x))) | (3) |
| a(u(x)) | → | x | (7) |
| c(w(x)) | → | x | (9) |
| b(c(x)) | → | c(b(b(x))) | (2) |
| a#(b(x)) | → | a#(x) | (12) |
| a#(b(x)) | → | a#(a(x)) | (17) |
The dependency pairs are split into 0 components.
| c#(a(x)) | → | c#(x) | (11) |
| c#(a(x)) | → | c#(c(x)) | (14) |
| π(c) | = | 1 |
| π(c#) | = | 1 |
| π(b#) | = | 1 |
| prec(a) | = | 4 | status(a) | = | [1] | list-extension(a) | = | Lex | ||
| prec(v) | = | 0 | status(v) | = | [] | list-extension(v) | = | Lex | ||
| prec(w#) | = | 0 | status(w#) | = | [] | list-extension(w#) | = | Lex | ||
| prec(b) | = | 2 | status(b) | = | [] | list-extension(b) | = | Lex | ||
| prec(u) | = | 0 | status(u) | = | [] | list-extension(u) | = | Lex | ||
| prec(u#) | = | 0 | status(u#) | = | [] | list-extension(u#) | = | Lex | ||
| prec(w) | = | 0 | status(w) | = | [1] | list-extension(w) | = | Lex | ||
| prec(v#) | = | 0 | status(v#) | = | [] | list-extension(v#) | = | Lex | ||
| prec(a#) | = | 1 | status(a#) | = | [1] | list-extension(a#) | = | Lex |
| [a(x1)] | = | x1 + 0 |
| [v(x1)] | = | x1 + 1 |
| [w#(x1)] | = | 1 |
| [b(x1)] | = | x1 + 0 |
| [u(x1)] | = | x1 + 28101 |
| [u#(x1)] | = | 1 |
| [w(x1)] | = | x1 + 20538 |
| [v#(x1)] | = | 1 |
| [a#(x1)] | = | x1 + 0 |
| b(v(x)) | → | x | (8) |
| a(b(x)) | → | b(a(a(x))) | (1) |
| c(a(x)) | → | a(c(c(x))) | (3) |
| a(u(x)) | → | x | (7) |
| c(w(x)) | → | x | (9) |
| b(c(x)) | → | c(b(b(x))) | (2) |
| c#(a(x)) | → | c#(x) | (11) |
| c#(a(x)) | → | c#(c(x)) | (14) |
The dependency pairs are split into 0 components.