The rewrite relation of the following TRS is considered.
| bsort(nil) | → | nil | (1) |
| bsort(.(x,y)) | → | last(.(bubble(.(x,y)),bsort(butlast(bubble(.(x,y)))))) | (2) |
| bubble(nil) | → | nil | (3) |
| bubble(.(x,nil)) | → | .(x,nil) | (4) |
| bubble(.(x,.(y,z))) | → | if(<=(x,y),.(y,bubble(.(x,z))),.(x,bubble(.(y,z)))) | (5) |
| last(nil) | → | 0 | (6) |
| last(.(x,nil)) | → | x | (7) |
| last(.(x,.(y,z))) | → | last(.(y,z)) | (8) |
| butlast(nil) | → | nil | (9) |
| butlast(.(x,nil)) | → | nil | (10) |
| butlast(.(x,.(y,z))) | → | .(x,butlast(.(y,z))) | (11) |
| bsort#(.(x,y)) | → | bubble#(.(x,y)) | (12) |
| butlast#(.(x,.(y,z))) | → | butlast#(.(y,z)) | (13) |
| last#(.(x,.(y,z))) | → | last#(.(y,z)) | (14) |
| bubble#(.(x,.(y,z))) | → | bubble#(.(x,z)) | (15) |
| bsort#(.(x,y)) | → | bubble#(.(x,y)) | (12) |
| bsort#(.(x,y)) | → | bsort#(butlast(bubble(.(x,y)))) | (16) |
| bsort#(.(x,y)) | → | last#(.(bubble(.(x,y)),bsort(butlast(bubble(.(x,y)))))) | (17) |
| bubble#(.(x,.(y,z))) | → | bubble#(.(y,z)) | (18) |
| bsort#(.(x,y)) | → | butlast#(bubble(.(x,y))) | (19) |
The dependency pairs are split into 4 components.
| bsort#(.(x,y)) | → | bsort#(butlast(bubble(.(x,y)))) | (16) |
| [bubble#(x1)] | = |
|
||||||||||||
| [butlast#(x1)] | = |
|
||||||||||||
| [<=(x1, x2)] | = |
|
||||||||||||
| [bsort#(x1)] | = |
|
||||||||||||
| [butlast(x1)] | = |
|
||||||||||||
| [last#(x1)] | = |
|
||||||||||||
| [if(x1, x2, x3)] | = |
|
||||||||||||
| [0] | = |
|
||||||||||||
| [last(x1)] | = |
|
||||||||||||
| [nil] | = |
|
||||||||||||
| [.(x1, x2)] | = |
|
||||||||||||
| [bubble(x1)] | = |
|
||||||||||||
| [bsort(x1)] | = |
|
| bubble(.(x,nil)) | → | .(x,nil) | (4) |
| bubble(nil) | → | nil | (3) |
| bubble(.(x,.(y,z))) | → | if(<=(x,y),.(y,bubble(.(x,z))),.(x,bubble(.(y,z)))) | (5) |
| butlast(.(x,nil)) | → | nil | (10) |
| butlast(.(x,.(y,z))) | → | .(x,butlast(.(y,z))) | (11) |
| butlast(nil) | → | nil | (9) |
| bsort#(.(x,y)) | → | bsort#(butlast(bubble(.(x,y)))) | (16) |
The dependency pairs are split into 0 components.
| last#(.(x,.(y,z))) | → | last#(.(y,z)) | (14) |
| [bubble#(x1)] | = | 0 |
| [butlast#(x1)] | = | 0 |
| [<=(x1, x2)] | = | 1 |
| [bsort#(x1)] | = | 0 |
| [butlast(x1)] | = | 36459 |
| [last#(x1)] | = | x1 + 0 |
| [if(x1, x2, x3)] | = | x1 + 0 |
| [0] | = | 0 |
| [last(x1)] | = | 0 |
| [nil] | = | 36460 |
| [.(x1, x2)] | = | x2 + 1 |
| [bubble(x1)] | = | 36461 |
| [bsort(x1)] | = | 0 |
| bubble(.(x,nil)) | → | .(x,nil) | (4) |
| bubble(nil) | → | nil | (3) |
| bubble(.(x,.(y,z))) | → | if(<=(x,y),.(y,bubble(.(x,z))),.(x,bubble(.(y,z)))) | (5) |
| last#(.(x,.(y,z))) | → | last#(.(y,z)) | (14) |
The dependency pairs are split into 0 components.
| butlast#(.(x,.(y,z))) | → | butlast#(.(y,z)) | (13) |
| [bubble#(x1)] | = | 0 |
| [butlast#(x1)] | = | x1 + 0 |
| [<=(x1, x2)] | = | 1 |
| [bsort#(x1)] | = | 0 |
| [butlast(x1)] | = | 2998 |
| [last#(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | x1 + 0 |
| [0] | = | 0 |
| [last(x1)] | = | 0 |
| [nil] | = | 36460 |
| [.(x1, x2)] | = | x2 + 1 |
| [bubble(x1)] | = | 36461 |
| [bsort(x1)] | = | 0 |
| bubble(.(x,nil)) | → | .(x,nil) | (4) |
| bubble(nil) | → | nil | (3) |
| bubble(.(x,.(y,z))) | → | if(<=(x,y),.(y,bubble(.(x,z))),.(x,bubble(.(y,z)))) | (5) |
| butlast#(.(x,.(y,z))) | → | butlast#(.(y,z)) | (13) |
The dependency pairs are split into 0 components.
| bubble#(.(x,.(y,z))) | → | bubble#(.(y,z)) | (18) |
| bubble#(.(x,.(y,z))) | → | bubble#(.(x,z)) | (15) |
| [bubble#(x1)] | = | x1 + 0 |
| [butlast#(x1)] | = | 0 |
| [<=(x1, x2)] | = | 1 |
| [bsort#(x1)] | = | 0 |
| [butlast(x1)] | = | 30205 |
| [last#(x1)] | = | 0 |
| [if(x1, x2, x3)] | = | x1 + 30206 |
| [0] | = | 0 |
| [last(x1)] | = | 0 |
| [nil] | = | 30206 |
| [.(x1, x2)] | = | x2 + 1 |
| [bubble(x1)] | = | 30207 |
| [bsort(x1)] | = | 0 |
| bubble(.(x,nil)) | → | .(x,nil) | (4) |
| bubble(nil) | → | nil | (3) |
| bubble(.(x,.(y,z))) | → | if(<=(x,y),.(y,bubble(.(x,z))),.(x,bubble(.(y,z)))) | (5) |
| bubble#(.(x,.(y,z))) | → | bubble#(.(y,z)) | (18) |
| bubble#(.(x,.(y,z))) | → | bubble#(.(x,z)) | (15) |
The dependency pairs are split into 0 components.