The rewrite relation of the following TRS is considered.
| f(b(a,z)) | → | z | (1) |
| b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
| f(f(f(c(z,x,a)))) | → | b(f(x),z) | (3) |
| b#(y,b(a,z)) | → | f#(c(y,y,a)) | (4) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
| b#(y,b(a,z)) | → | b#(f(z),a) | (7) |
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
| b#(y,b(a,z)) | → | f#(z) | (9) |
The dependency pairs are split into 1 component.
| b#(y,b(a,z)) | → | f#(z) | (9) |
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
| [a] | = | 0 |
| [b(x1, x2)] | = | x2 + 28105 |
| [c(x1, x2, x3)] | = | x1 + x2 + 1 |
| [f(x1)] | = | x1 + 1 |
| [f#(x1)] | = | x1 + 0 |
| [b#(x1, x2)] | = | x2 + 2 |
| b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
| b#(y,b(a,z)) | → | f#(z) | (9) |
| f#(f(f(c(z,x,a)))) | → | f#(x) | (5) |
| f#(f(f(c(z,x,a)))) | → | b#(f(x),z) | (6) |
The dependency pairs are split into 1 component.
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
| [a] | = |
|
|||||||||||||||||||
| [b(x1, x2)] | = |
|
|||||||||||||||||||
| [c(x1, x2, x3)] | = |
|
|||||||||||||||||||
| [f(x1)] | = |
|
|||||||||||||||||||
| [f#(x1)] | = |
|
|||||||||||||||||||
| [b#(x1, x2)] | = |
|
| f(b(a,z)) | → | z | (1) |
| f(f(f(c(z,x,a)))) | → | b(f(x),z) | (3) |
| b(y,b(a,z)) | → | b(f(c(y,y,a)),b(f(z),a)) | (2) |
| b#(y,b(a,z)) | → | b#(f(c(y,y,a)),b(f(z),a)) | (8) |
The dependency pairs are split into 0 components.