The rewrite relation of the following TRS is considered.
| b(b(y,z),c(a,a,a)) | → | f(c(z,y,z)) | (1) |
| f(b(b(a,z),c(a,x,y))) | → | z | (2) |
| c(y,x,f(z)) | → | b(f(b(z,x)),z) | (3) |
| c#(y,x,f(z)) | → | f#(b(z,x)) | (4) |
| b#(b(y,z),c(a,a,a)) | → | c#(z,y,z) | (5) |
| c#(y,x,f(z)) | → | b#(z,x) | (6) |
| c#(y,x,f(z)) | → | b#(f(b(z,x)),z) | (7) |
| b#(b(y,z),c(a,a,a)) | → | f#(c(z,y,z)) | (8) |
The dependency pairs are split into 1 component.
| c#(y,x,f(z)) | → | b#(f(b(z,x)),z) | (7) |
| c#(y,x,f(z)) | → | b#(z,x) | (6) |
| b#(b(y,z),c(a,a,a)) | → | c#(z,y,z) | (5) |
| [a] | = | 0 |
| [b(x1, x2)] | = | max(x1 + 1, x2 + 1, 0) |
| [c(x1, x2, x3)] | = | max(x1 + 1, x2 + 2, x3 + 2, 0) |
| [f(x1)] | = | x1 + 0 |
| [f#(x1)] | = | 0 |
| [c#(x1, x2, x3)] | = | max(x2 + 28102, x3 + 28102, 0) |
| [b#(x1, x2)] | = | max(x1 + 28101, 0) |
| b(b(y,z),c(a,a,a)) | → | f(c(z,y,z)) | (1) |
| c(y,x,f(z)) | → | b(f(b(z,x)),z) | (3) |
| f(b(b(a,z),c(a,x,y))) | → | z | (2) |
| c#(y,x,f(z)) | → | b#(z,x) | (6) |
The dependency pairs are split into 1 component.
| b#(b(y,z),c(a,a,a)) | → | c#(z,y,z) | (5) |
| c#(y,x,f(z)) | → | b#(f(b(z,x)),z) | (7) |
| π(f#) | = | 1 |
| π(b#) | = | 1 |
| prec(a) | = | 0 | status(a) | = | [] | list-extension(a) | = | Lex | ||
| prec(b) | = | 2 | status(b) | = | [] | list-extension(b) | = | Lex | ||
| prec(c) | = | 3 | status(c) | = | [] | list-extension(c) | = | Lex | ||
| prec(f) | = | 1 | status(f) | = | [] | list-extension(f) | = | Lex | ||
| prec(c#) | = | 1 | status(c#) | = | [] | list-extension(c#) | = | Lex |
| [a] | = | 2 |
| [b(x1, x2)] | = | max(x1 + 7723, x2 + 7723, 0) |
| [c(x1, x2, x3)] | = | max(x1 + 1, x2 + 15446, x3 + 15446, 0) |
| [f(x1)] | = | x1 + 0 |
| [c#(x1, x2, x3)] | = | max(x1 + 7723, x2 + 7723, x3 + 7723, 0) |
| b(b(y,z),c(a,a,a)) | → | f(c(z,y,z)) | (1) |
| c(y,x,f(z)) | → | b(f(b(z,x)),z) | (3) |
| f(b(b(a,z),c(a,x,y))) | → | z | (2) |
| b#(b(y,z),c(a,a,a)) | → | c#(z,y,z) | (5) |
The dependency pairs are split into 0 components.