The rewrite relation of the following TRS is considered.
| b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
| f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
| c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
| f#(c(a,b(b(z,a),y),x)) | → | c#(x,b(z,x),y) | (4) |
| c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (5) |
| c#(f(c(a,y,a)),x,z) | → | b#(x,a) | (6) |
| b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (7) |
| b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (8) |
| c#(f(c(a,y,a)),x,z) | → | f#(b(y,b(x,a))) | (9) |
| b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (10) |
| c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (11) |
| f#(c(a,b(b(z,a),y),x)) | → | b#(z,x) | (12) |
| f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (13) |
| c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
| c#(f(c(a,y,a)),x,z) | → | f#(b(b(z,z),f(b(y,b(x,a))))) | (15) |
The dependency pairs are split into 1 component.
| c#(f(c(a,y,a)),x,z) | → | f#(b(b(z,z),f(b(y,b(x,a))))) | (15) |
| b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (8) |
| c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
| f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (13) |
| f#(c(a,b(b(z,a),y),x)) | → | b#(z,x) | (12) |
| b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (7) |
| c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (5) |
| c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (11) |
| b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (10) |
| c#(f(c(a,y,a)),x,z) | → | f#(b(y,b(x,a))) | (9) |
| f#(c(a,b(b(z,a),y),x)) | → | c#(x,b(z,x),y) | (4) |
| [a] | = | 1 |
| [b(x1, x2)] | = | 21239 |
| [c(x1, x2, x3)] | = | x2 + 2 |
| [f(x1)] | = | 1 |
| [f#(x1)] | = | x1 + 0 |
| [c#(x1, x2, x3)] | = | 21240 |
| [b#(x1, x2)] | = | 21240 |
| b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
| c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
| f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
| c#(f(c(a,y,a)),x,z) | → | f#(b(b(z,z),f(b(y,b(x,a))))) | (15) |
| f#(c(a,b(b(z,a),y),x)) | → | b#(z,x) | (12) |
| c#(f(c(a,y,a)),x,z) | → | f#(b(y,b(x,a))) | (9) |
| f#(c(a,b(b(z,a),y),x)) | → | c#(x,b(z,x),y) | (4) |
The dependency pairs are split into 2 components.
| b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (8) |
| b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (7) |
| b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (10) |
| c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
| c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (5) |
| c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (11) |
| [a] | = | 0 |
| [b(x1, x2)] | = | max(x1 + 8862, x2 + 8861, 0) |
| [c(x1, x2, x3)] | = | max(x1 + 8859, x2 + 8858, x3 + 8860, 0) |
| [f(x1)] | = | 8858 |
| [f#(x1)] | = | 0 |
| [c#(x1, x2, x3)] | = | max(x1 + 2443, x2 + 11301, x3 + 11301, 0) |
| [b#(x1, x2)] | = | max(x2 + 2438, 0) |
| b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
| c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
| f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
| b#(a,b(c(z,x,y),a)) | → | c#(y,z,a) | (8) |
| b#(a,b(c(z,x,y),a)) | → | b#(z,c(y,z,a)) | (7) |
| b#(a,b(c(z,x,y),a)) | → | b#(b(z,c(y,z,a)),x) | (10) |
| c#(f(c(a,y,a)),x,z) | → | b#(y,b(x,a)) | (14) |
| c#(f(c(a,y,a)),x,z) | → | b#(z,z) | (5) |
| c#(f(c(a,y,a)),x,z) | → | b#(b(z,z),f(b(y,b(x,a)))) | (11) |
The dependency pairs are split into 0 components.
| f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (13) |
| [a] | = |
|
||||||||||||||||||||||||||
| [b(x1, x2)] | = |
|
||||||||||||||||||||||||||
| [c(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||
| [f(x1)] | = |
|
||||||||||||||||||||||||||
| [f#(x1)] | = |
|
||||||||||||||||||||||||||
| [c#(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||
| [b#(x1, x2)] | = |
|
| b(a,b(c(z,x,y),a)) | → | b(b(z,c(y,z,a)),x) | (1) |
| c(f(c(a,y,a)),x,z) | → | f(b(b(z,z),f(b(y,b(x,a))))) | (3) |
| f(c(a,b(b(z,a),y),x)) | → | f(c(x,b(z,x),y)) | (2) |
| f#(c(a,b(b(z,a),y),x)) | → | f#(c(x,b(z,x),y)) | (13) |
The dependency pairs are split into 0 components.