Certification Problem
Input (TPDB TRS_Standard/Secret_07_TRS/secret5)
The rewrite relation of the following TRS is considered.
t(N) |
→ |
cs(r(q(N)),nt(ns(N))) |
(1) |
q(0) |
→ |
0 |
(2) |
q(s(X)) |
→ |
s(p(q(X),d(X))) |
(3) |
d(0) |
→ |
0 |
(4) |
d(s(X)) |
→ |
s(s(d(X))) |
(5) |
p(0,X) |
→ |
X |
(6) |
p(X,0) |
→ |
X |
(7) |
p(s(X),s(Y)) |
→ |
s(s(p(X,Y))) |
(8) |
f(0,X) |
→ |
nil |
(9) |
f(s(X),cs(Y,Z)) |
→ |
cs(Y,nf(X,a(Z))) |
(10) |
t(X) |
→ |
nt(X) |
(11) |
s(X) |
→ |
ns(X) |
(12) |
f(X1,X2) |
→ |
nf(X1,X2) |
(13) |
a(nt(X)) |
→ |
t(a(X)) |
(14) |
a(ns(X)) |
→ |
s(a(X)) |
(15) |
a(nf(X1,X2)) |
→ |
f(a(X1),a(X2)) |
(16) |
a(X) |
→ |
X |
(17) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by NaTT @ termCOMP 2023)
1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
a#(nt(X)) |
→ |
a#(X) |
(18) |
d#(s(X)) |
→ |
d#(X) |
(19) |
q#(s(X)) |
→ |
d#(X) |
(20) |
a#(nf(X1,X2)) |
→ |
a#(X2) |
(21) |
q#(s(X)) |
→ |
p#(q(X),d(X)) |
(22) |
q#(s(X)) |
→ |
q#(X) |
(23) |
t#(N) |
→ |
q#(N) |
(24) |
a#(nf(X1,X2)) |
→ |
f#(a(X1),a(X2)) |
(25) |
q#(s(X)) |
→ |
s#(p(q(X),d(X))) |
(26) |
d#(s(X)) |
→ |
s#(d(X)) |
(27) |
p#(s(X),s(Y)) |
→ |
p#(X,Y) |
(28) |
a#(ns(X)) |
→ |
a#(X) |
(29) |
p#(s(X),s(Y)) |
→ |
s#(p(X,Y)) |
(30) |
f#(s(X),cs(Y,Z)) |
→ |
a#(Z) |
(31) |
a#(nt(X)) |
→ |
t#(a(X)) |
(32) |
a#(nf(X1,X2)) |
→ |
a#(X1) |
(33) |
p#(s(X),s(Y)) |
→ |
s#(s(p(X,Y))) |
(34) |
d#(s(X)) |
→ |
s#(s(d(X))) |
(35) |
a#(ns(X)) |
→ |
s#(a(X)) |
(36) |
1.1 Dependency Graph Processor
The dependency pairs are split into 4
components.
-
The
1st
component contains the
pair
a#(nf(X1,X2)) |
→ |
a#(X1) |
(33) |
f#(s(X),cs(Y,Z)) |
→ |
a#(Z) |
(31) |
a#(nf(X1,X2)) |
→ |
a#(X2) |
(21) |
a#(ns(X)) |
→ |
a#(X) |
(29) |
a#(nf(X1,X2)) |
→ |
f#(a(X1),a(X2)) |
(25) |
a#(nt(X)) |
→ |
a#(X) |
(18) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a(x1)] |
=
|
x1 + 0 |
[nf(x1, x2)] |
=
|
x1 + x2 + 28883 |
[q(x1)] |
=
|
1 |
[d(x1)] |
=
|
x1 + 33215 |
[s(x1)] |
=
|
x1 + 0 |
[r(x1)] |
=
|
x1 + 0 |
[t(x1)] |
=
|
x1 + 18458 |
[ns(x1)] |
=
|
x1 + 0 |
[p#(x1, x2)] |
=
|
0 |
[cs(x1, x2)] |
=
|
x2 + 0 |
[f(x1, x2)] |
=
|
x1 + x2 + 28883 |
[p(x1, x2)] |
=
|
21657 |
[0] |
=
|
25908 |
[s#(x1)] |
=
|
0 |
[nil] |
=
|
0 |
[d#(x1)] |
=
|
0 |
[f#(x1, x2)] |
=
|
x2 + 1 |
[nt(x1)] |
=
|
x1 + 18458 |
[a#(x1)] |
=
|
x1 + 0 |
[q#(x1)] |
=
|
0 |
[t#(x1)] |
=
|
0 |
together with the usable
rules
d(0) |
→ |
0 |
(4) |
a(ns(X)) |
→ |
s(a(X)) |
(15) |
t(N) |
→ |
cs(r(q(N)),nt(ns(N))) |
(1) |
a(nf(X1,X2)) |
→ |
f(a(X1),a(X2)) |
(16) |
a(X) |
→ |
X |
(17) |
d(s(X)) |
→ |
s(s(d(X))) |
(5) |
f(s(X),cs(Y,Z)) |
→ |
cs(Y,nf(X,a(Z))) |
(10) |
a(nt(X)) |
→ |
t(a(X)) |
(14) |
s(X) |
→ |
ns(X) |
(12) |
t(X) |
→ |
nt(X) |
(11) |
f(0,X) |
→ |
nil |
(9) |
f(X1,X2) |
→ |
nf(X1,X2) |
(13) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
a#(nf(X1,X2)) |
→ |
a#(X1) |
(33) |
f#(s(X),cs(Y,Z)) |
→ |
a#(Z) |
(31) |
a#(nf(X1,X2)) |
→ |
a#(X2) |
(21) |
a#(nf(X1,X2)) |
→ |
f#(a(X1),a(X2)) |
(25) |
a#(nt(X)) |
→ |
a#(X) |
(18) |
could be deleted.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.
-
The
2nd
component contains the
pair
1.1.2 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a(x1)] |
=
|
x1 + 0 |
[nf(x1, x2)] |
=
|
x1 + 25074 |
[q(x1)] |
=
|
x1 + 1 |
[d(x1)] |
=
|
43324 |
[s(x1)] |
=
|
x1 + 1 |
[r(x1)] |
=
|
x1 + 0 |
[t(x1)] |
=
|
x1 + 24480 |
[ns(x1)] |
=
|
x1 + 2 |
[p#(x1, x2)] |
=
|
0 |
[cs(x1, x2)] |
=
|
x2 + 24480 |
[f(x1, x2)] |
=
|
x2 + 25073 |
[p(x1, x2)] |
=
|
0 |
[0] |
=
|
43325 |
[s#(x1)] |
=
|
0 |
[nil] |
=
|
25074 |
[d#(x1)] |
=
|
0 |
[f#(x1, x2)] |
=
|
1 |
[nt(x1)] |
=
|
1 |
[a#(x1)] |
=
|
0 |
[q#(x1)] |
=
|
x1 + 0 |
[t#(x1)] |
=
|
0 |
together with the usable
rule
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
could be deleted.
1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
3rd
component contains the
pair
p#(s(X),s(Y)) |
→ |
p#(X,Y) |
(28) |
1.1.3 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a(x1)] |
=
|
x1 + 0 |
[nf(x1, x2)] |
=
|
x1 + 25074 |
[q(x1)] |
=
|
x1 + 1 |
[d(x1)] |
=
|
43324 |
[s(x1)] |
=
|
x1 + 1 |
[r(x1)] |
=
|
x1 + 0 |
[t(x1)] |
=
|
x1 + 24480 |
[ns(x1)] |
=
|
x1 + 2 |
[p#(x1, x2)] |
=
|
x1 + 0 |
[cs(x1, x2)] |
=
|
x2 + 24480 |
[f(x1, x2)] |
=
|
x2 + 25073 |
[p(x1, x2)] |
=
|
0 |
[0] |
=
|
43325 |
[s#(x1)] |
=
|
0 |
[nil] |
=
|
25074 |
[d#(x1)] |
=
|
0 |
[f#(x1, x2)] |
=
|
1 |
[nt(x1)] |
=
|
1 |
[a#(x1)] |
=
|
0 |
[q#(x1)] |
=
|
0 |
[t#(x1)] |
=
|
0 |
together with the usable
rule
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
p#(s(X),s(Y)) |
→ |
p#(X,Y) |
(28) |
could be deleted.
1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
4th
component contains the
pair
1.1.4 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a(x1)] |
=
|
x1 + 0 |
[nf(x1, x2)] |
=
|
x1 + 25074 |
[q(x1)] |
=
|
x1 + 1 |
[d(x1)] |
=
|
53793 |
[s(x1)] |
=
|
x1 + 1 |
[r(x1)] |
=
|
x1 + 0 |
[t(x1)] |
=
|
x1 + 49765 |
[ns(x1)] |
=
|
2 |
[p#(x1, x2)] |
=
|
0 |
[cs(x1, x2)] |
=
|
x2 + 23929 |
[f(x1, x2)] |
=
|
x2 + 25073 |
[p(x1, x2)] |
=
|
0 |
[0] |
=
|
53794 |
[s#(x1)] |
=
|
0 |
[nil] |
=
|
25074 |
[d#(x1)] |
=
|
x1 + 0 |
[f#(x1, x2)] |
=
|
1 |
[nt(x1)] |
=
|
x1 + 25835 |
[a#(x1)] |
=
|
0 |
[q#(x1)] |
=
|
0 |
[t#(x1)] |
=
|
0 |
together with the usable
rule
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
could be deleted.
1.1.4.1 Dependency Graph Processor
The dependency pairs are split into 0
components.