The rewrite relation of the following TRS is considered.
| quot(0,s(y),s(z)) | → | 0 | (1) |
| quot(s(x),s(y),z) | → | quot(x,y,z) | (2) |
| plus(0,y) | → | y | (3) |
| plus(s(x),y) | → | s(plus(x,y)) | (4) |
| quot(x,0,s(z)) | → | s(quot(x,plus(z,s(0)),s(z))) | (5) |
| quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (6) |
| quot#(x,0,s(z)) | → | plus#(z,s(0)) | (7) |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (8) |
| plus#(s(x),y) | → | plus#(x,y) | (9) |
The dependency pairs are split into 2 components.
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (8) |
| quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (6) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [quot(x1, x2, x3)] | = | 0 |
| [plus(x1, x2)] | = | x1 + 32286 |
| [quot#(x1, x2, x3)] | = | x1 + 0 |
| quot#(s(x),s(y),z) | → | quot#(x,y,z) | (8) |
The dependency pairs are split into 1 component.
| quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (6) |
| [s(x1)] | = | 1 |
| [plus#(x1, x2)] | = | 0 |
| [0] | = | 3 |
| [quot(x1, x2, x3)] | = | 0 |
| [plus(x1, x2)] | = | x2 + 1 |
| [quot#(x1, x2, x3)] | = | x2 + 0 |
| plus(s(x),y) | → | s(plus(x,y)) | (4) |
| plus(0,y) | → | y | (3) |
| quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (6) |
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(x,y) | (9) |
| [s(x1)] | = | x1 + 1 |
| [plus#(x1, x2)] | = | x1 + 0 |
| [0] | = | 20819 |
| [quot(x1, x2, x3)] | = | 0 |
| [plus(x1, x2)] | = | x1 + x2 + 0 |
| [quot#(x1, x2, x3)] | = | x2 + 0 |
| plus(s(x),y) | → | s(plus(x,y)) | (4) |
| plus(0,y) | → | y | (3) |
| plus#(s(x),y) | → | plus#(x,y) | (9) |
The dependency pairs are split into 0 components.