The rewrite relation of the following TRS is considered.
The dependency pairs are split into 10
components.
-
The
1st
component contains the
pair
g_10#(s(x),y) |
→ |
g_10#(x,y) |
(39) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
x1 + 0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_10#(s(x),y) |
→ |
g_10#(x,y) |
(39) |
could be deleted.
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
2nd
component contains the
pair
g_9#(s(x),y) |
→ |
g_9#(x,y) |
(34) |
1.1.2 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
x1 + 0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_9#(s(x),y) |
→ |
g_9#(x,y) |
(34) |
could be deleted.
1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
3rd
component contains the
pair
g_8#(s(x),y) |
→ |
g_8#(x,y) |
(51) |
1.1.3 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
x1 + 0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_8#(s(x),y) |
→ |
g_8#(x,y) |
(51) |
could be deleted.
1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
4th
component contains the
pair
g_7#(s(x),y) |
→ |
g_7#(x,y) |
(38) |
1.1.4 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
x1 + 0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_7#(s(x),y) |
→ |
g_7#(x,y) |
(38) |
could be deleted.
1.1.4.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
5th
component contains the
pair
g_6#(s(x),y) |
→ |
g_6#(x,y) |
(50) |
1.1.5 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
x1 + 0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_6#(s(x),y) |
→ |
g_6#(x,y) |
(50) |
could be deleted.
1.1.5.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
6th
component contains the
pair
g_5#(s(x),y) |
→ |
g_5#(x,y) |
(48) |
1.1.6 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
x1 + 0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_5#(s(x),y) |
→ |
g_5#(x,y) |
(48) |
could be deleted.
1.1.6.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
7th
component contains the
pair
g_4#(s(x),y) |
→ |
g_4#(x,y) |
(24) |
1.1.7 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
x1 + 0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_4#(s(x),y) |
→ |
g_4#(x,y) |
(24) |
could be deleted.
1.1.7.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
8th
component contains the
pair
g_3#(s(x),y) |
→ |
g_3#(x,y) |
(25) |
1.1.8 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
x1 + 0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_3#(s(x),y) |
→ |
g_3#(x,y) |
(25) |
could be deleted.
1.1.8.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
9th
component contains the
pair
g_2#(s(x),y) |
→ |
g_2#(x,y) |
(45) |
1.1.9 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
x1 + 0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_2#(s(x),y) |
→ |
g_2#(x,y) |
(45) |
could be deleted.
1.1.9.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
10th
component contains the
pair
g_1#(s(x),y) |
→ |
g_1#(x,y) |
(33) |
1.1.10 Reduction Pair Processor with Usable Rules
Using the Max-polynomial interpretation
[a] |
=
|
0 |
[f_9(x1)] |
=
|
0 |
[g_5(x1, x2)] |
=
|
0 |
[f_6(x1)] |
=
|
0 |
[f_7(x1)] |
=
|
0 |
[g_1#(x1, x2)] |
=
|
x1 + 0 |
[f_6#(x1)] |
=
|
0 |
[s(x1)] |
=
|
x1 + 1 |
[g_4#(x1, x2)] |
=
|
0 |
[g_9(x1, x2)] |
=
|
0 |
[f_4#(x1)] |
=
|
0 |
[b(x1, x2)] |
=
|
0 |
[g_3(x1, x2)] |
=
|
0 |
[f_8#(x1)] |
=
|
0 |
[f_10#(x1)] |
=
|
0 |
[g_8(x1, x2)] |
=
|
0 |
[g_6#(x1, x2)] |
=
|
0 |
[f_5(x1)] |
=
|
0 |
[f_2(x1)] |
=
|
0 |
[g_10(x1, x2)] |
=
|
0 |
[g_3#(x1, x2)] |
=
|
0 |
[g_7(x1, x2)] |
=
|
0 |
[f_2#(x1)] |
=
|
0 |
[g_1(x1, x2)] |
=
|
0 |
[g_2(x1, x2)] |
=
|
0 |
[g_2#(x1, x2)] |
=
|
0 |
[f_9#(x1)] |
=
|
0 |
[f_1(x1)] |
=
|
0 |
[f_7#(x1)] |
=
|
0 |
[g_5#(x1, x2)] |
=
|
0 |
[g_6(x1, x2)] |
=
|
0 |
[f_8(x1)] |
=
|
0 |
[g_4(x1, x2)] |
=
|
0 |
[f_0#(x1)] |
=
|
0 |
[g_10#(x1, x2)] |
=
|
0 |
[f_0(x1)] |
=
|
0 |
[f_10(x1)] |
=
|
0 |
[f_3#(x1)] |
=
|
0 |
[f_4(x1)] |
=
|
0 |
[f_1#(x1)] |
=
|
0 |
[g_7#(x1, x2)] |
=
|
0 |
[g_8#(x1, x2)] |
=
|
0 |
[f_5#(x1)] |
=
|
0 |
[g_9#(x1, x2)] |
=
|
0 |
[f_3(x1)] |
=
|
0 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
g_1#(s(x),y) |
→ |
g_1#(x,y) |
(33) |
could be deleted.
1.1.10.1 Dependency Graph Processor
The dependency pairs are split into 0
components.