The rewrite relation of the following TRS is considered.
| a(a(f(x,y))) | → | f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (1) |
| f(a(x),a(y)) | → | a(f(x,y)) | (2) |
| f(b(x),b(y)) | → | b(f(x,y)) | (3) |
| f#(a(x),a(y)) | → | f#(x,y) | (4) |
| a#(a(f(x,y))) | → | a#(b(a(x))) | (5) |
| a#(a(f(x,y))) | → | a#(b(a(y))) | (6) |
| a#(a(f(x,y))) | → | a#(x) | (7) |
| a#(a(f(x,y))) | → | a#(y) | (8) |
| a#(a(f(x,y))) | → | a#(b(a(b(a(x))))) | (9) |
| f#(b(x),b(y)) | → | f#(x,y) | (10) |
| f#(a(x),a(y)) | → | a#(f(x,y)) | (11) |
| a#(a(f(x,y))) | → | a#(b(a(b(a(y))))) | (12) |
| a#(a(f(x,y))) | → | f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (13) |
The dependency pairs are split into 1 component.
| a#(a(f(x,y))) | → | f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (13) |
| f#(a(x),a(y)) | → | a#(f(x,y)) | (11) |
| f#(b(x),b(y)) | → | f#(x,y) | (10) |
| a#(a(f(x,y))) | → | a#(y) | (8) |
| a#(a(f(x,y))) | → | a#(x) | (7) |
| f#(a(x),a(y)) | → | f#(x,y) | (4) |
| [a(x1)] | = | x1 + 0 |
| [b(x1)] | = | x1 + 0 |
| [f(x1, x2)] | = | x1 + x2 + 1 |
| [f#(x1, x2)] | = | x1 + x2 + 1 |
| [a#(x1)] | = | x1 + 0 |
| a(a(f(x,y))) | → | f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (1) |
| f(b(x),b(y)) | → | b(f(x,y)) | (3) |
| f(a(x),a(y)) | → | a(f(x,y)) | (2) |
| a#(a(f(x,y))) | → | a#(y) | (8) |
| a#(a(f(x,y))) | → | a#(x) | (7) |
The dependency pairs are split into 1 component.
| a#(a(f(x,y))) | → | f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (13) |
| f#(b(x),b(y)) | → | f#(x,y) | (10) |
| f#(a(x),a(y)) | → | f#(x,y) | (4) |
| f#(a(x),a(y)) | → | a#(f(x,y)) | (11) |
| [a(x1)] | = |
|
|||||||||||||||||||
| [b(x1)] | = |
|
|||||||||||||||||||
| [f(x1, x2)] | = |
x1 + x2 +
|
|||||||||||||||||||
| [f#(x1, x2)] | = |
|
|||||||||||||||||||
| [a#(x1)] | = |
|
| a(a(f(x,y))) | → | f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (1) |
| f(b(x),b(y)) | → | b(f(x,y)) | (3) |
| f(a(x),a(y)) | → | a(f(x,y)) | (2) |
| a#(a(f(x,y))) | → | f#(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (13) |
| f#(a(x),a(y)) | → | a#(f(x,y)) | (11) |
The dependency pairs are split into 1 component.
| f#(b(x),b(y)) | → | f#(x,y) | (10) |
| f#(a(x),a(y)) | → | f#(x,y) | (4) |
| [a(x1)] | = |
|
||||||||||||
| [b(x1)] | = |
|
||||||||||||
| [f(x1, x2)] | = |
x1 +
|
||||||||||||
| [f#(x1, x2)] | = |
|
||||||||||||
| [a#(x1)] | = |
|
| a(a(f(x,y))) | → | f(a(b(a(b(a(x))))),a(b(a(b(a(y)))))) | (1) |
| f(b(x),b(y)) | → | b(f(x,y)) | (3) |
| f(a(x),a(y)) | → | a(f(x,y)) | (2) |
| f#(b(x),b(y)) | → | f#(x,y) | (10) |
| f#(a(x),a(y)) | → | f#(x,y) | (4) |
The dependency pairs are split into 0 components.