The rewrite relation of the following TRS is considered.
times(x,plus(y,s(z))) | → | plus(times(x,plus(y,times(s(z),0))),times(x,s(z))) | (1) |
times(x,0) | → | 0 | (2) |
times(x,s(y)) | → | plus(times(x,y),x) | (3) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
times#(x,plus(y,s(z))) | → | times#(x,s(z)) | (6) |
times#(x,plus(y,s(z))) | → | times#(s(z),0) | (7) |
times#(x,plus(y,s(z))) | → | plus#(y,times(s(z),0)) | (8) |
times#(x,plus(y,s(z))) | → | times#(x,plus(y,times(s(z),0))) | (9) |
times#(x,plus(y,s(z))) | → | plus#(times(x,plus(y,times(s(z),0))),times(x,s(z))) | (10) |
times#(x,s(y)) | → | times#(x,y) | (11) |
times#(x,s(y)) | → | plus#(times(x,y),x) | (12) |
plus#(x,s(y)) | → | plus#(x,y) | (13) |
The dependency pairs are split into 2 components.
times#(x,plus(y,s(z))) | → | times#(x,plus(y,times(s(z),0))) | (9) |
times#(x,s(y)) | → | times#(x,y) | (11) |
times#(x,plus(y,s(z))) | → | times#(x,s(z)) | (6) |
prec(times#) | = | 0 | stat(times#) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex | |
prec(times) | = | 0 | stat(times) | = | lex | |
prec(plus) | = | 4 | stat(plus) | = | lex | |
prec(s) | = | 2 | stat(s) | = | lex |
π(times#) | = | 2 |
π(0) | = | [] |
π(times) | = | 2 |
π(plus) | = | [1,2] |
π(s) | = | [1] |
times(x,0) | → | 0 | (2) |
plus(x,0) | → | x | (4) |
plus(x,s(y)) | → | s(plus(x,y)) | (5) |
times#(x,plus(y,s(z))) | → | times#(x,plus(y,times(s(z),0))) | (9) |
times#(x,s(y)) | → | times#(x,y) | (11) |
times#(x,plus(y,s(z))) | → | times#(x,s(z)) | (6) |
There are no pairs anymore.
plus#(x,s(y)) | → | plus#(x,y) | (13) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
plus#(x,s(y)) | → | plus#(x,y) | (13) |
2 | > | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.