The rewrite relation of the following TRS is considered.
| minus(x,0) | → | x | (1) |
| minus(s(x),s(y)) | → | minus(x,y) | (2) |
| quot(0,s(y)) | → | 0 | (3) |
| quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (4) |
| plus(0,y) | → | y | (5) |
| plus(s(x),y) | → | s(plus(x,y)) | (6) |
| plus(minus(x,s(0)),minus(y,s(s(z)))) | → | plus(minus(y,s(s(z))),minus(x,s(0))) | (7) |
| minus#(s(x),s(y)) | → | minus#(x,y) | (8) |
| quot#(s(x),s(y)) | → | minus#(x,y) | (9) |
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (10) |
| plus#(s(x),y) | → | plus#(x,y) | (11) |
| plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (12) |
The dependency pairs are split into 3 components.
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (10) |
| π(quot#) | = | { 1 } |
| π(minus) | = | { 1 } |
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (10) |
There are no pairs anymore.
| minus#(s(x),s(y)) | → | minus#(x,y) | (8) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| minus#(s(x),s(y)) | → | minus#(x,y) | (8) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| plus#(s(x),y) | → | plus#(x,y) | (11) |
| plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (12) |
| π(plus#) | = | { 1, 1, 2, 2 } |
| plus#(s(x),y) | → | plus#(x,y) | (11) |
| [minus(x1, x2)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| [0] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| [plus#(x1, x2)] | = |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| [s(x1)] | = |
|
| minus(s(x),s(y)) | → | minus(x,y) | (2) |
| minus(x,0) | → | x | (1) |
| plus#(minus(x,s(0)),minus(y,s(s(z)))) | → | plus#(minus(y,s(s(z))),minus(x,s(0))) | (12) |
There are no pairs anymore.