The rewrite relation of the following TRS is considered.
minus_active(0,y) | → | 0 | (1) |
mark(0) | → | 0 | (2) |
minus_active(s(x),s(y)) | → | minus_active(x,y) | (3) |
mark(s(x)) | → | s(mark(x)) | (4) |
ge_active(x,0) | → | true | (5) |
mark(minus(x,y)) | → | minus_active(x,y) | (6) |
ge_active(0,s(y)) | → | false | (7) |
mark(ge(x,y)) | → | ge_active(x,y) | (8) |
ge_active(s(x),s(y)) | → | ge_active(x,y) | (9) |
mark(div(x,y)) | → | div_active(mark(x),y) | (10) |
div_active(0,s(y)) | → | 0 | (11) |
mark(if(x,y,z)) | → | if_active(mark(x),y,z) | (12) |
div_active(s(x),s(y)) | → | if_active(ge_active(x,y),s(div(minus(x,y),s(y))),0) | (13) |
if_active(true,x,y) | → | mark(x) | (14) |
minus_active(x,y) | → | minus(x,y) | (15) |
if_active(false,x,y) | → | mark(y) | (16) |
ge_active(x,y) | → | ge(x,y) | (17) |
if_active(x,y,z) | → | if(x,y,z) | (18) |
div_active(x,y) | → | div(x,y) | (19) |
minus_active#(s(x),s(y)) | → | minus_active#(x,y) | (20) |
mark#(s(x)) | → | mark#(x) | (21) |
mark#(minus(x,y)) | → | minus_active#(x,y) | (22) |
mark#(ge(x,y)) | → | ge_active#(x,y) | (23) |
ge_active#(s(x),s(y)) | → | ge_active#(x,y) | (24) |
mark#(div(x,y)) | → | mark#(x) | (25) |
mark#(div(x,y)) | → | div_active#(mark(x),y) | (26) |
mark#(if(x,y,z)) | → | mark#(x) | (27) |
mark#(if(x,y,z)) | → | if_active#(mark(x),y,z) | (28) |
div_active#(s(x),s(y)) | → | ge_active#(x,y) | (29) |
div_active#(s(x),s(y)) | → | if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),0) | (30) |
if_active#(true,x,y) | → | mark#(x) | (31) |
if_active#(false,x,y) | → | mark#(y) | (32) |
The dependency pairs are split into 3 components.
if_active#(false,x,y) | → | mark#(y) | (32) |
mark#(s(x)) | → | mark#(x) | (21) |
mark#(div(x,y)) | → | mark#(x) | (25) |
mark#(div(x,y)) | → | div_active#(mark(x),y) | (26) |
div_active#(s(x),s(y)) | → | if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),0) | (30) |
if_active#(true,x,y) | → | mark#(x) | (31) |
mark#(if(x,y,z)) | → | mark#(x) | (27) |
mark#(if(x,y,z)) | → | if_active#(mark(x),y,z) | (28) |
[ge_active(x1, x2)] | = | 3 · x1 + 0 · x2 + -∞ |
[ge(x1, x2)] | = | 1 · x1 + 0 · x2 + 2 |
[minus_active(x1, x2)] | = | 0 · x1 + -∞ · x2 + 4 |
[s(x1)] | = | 0 · x1 + 1 |
[div_active#(x1, x2)] | = | -∞ · x1 + 3 · x2 + -∞ |
[if_active#(x1, x2, x3)] | = | -∞ · x1 + 0 · x2 + 0 · x3 + 2 |
[true] | = | 2 |
[div_active(x1, x2)] | = | 0 · x1 + 3 · x2 + 0 |
[0] | = | 4 |
[false] | = | 0 |
[mark#(x1)] | = | 0 · x1 + 2 |
[if_active(x1, x2, x3)] | = | 0 · x1 + -∞ · x2 + -∞ · x3 + -∞ |
[if(x1, x2, x3)] | = | 0 · x1 + 2 · x2 + 5 · x3 + 3 |
[div(x1, x2)] | = | 0 · x1 + 3 · x2 + 1 |
[minus(x1, x2)] | = | -∞ · x1 + 0 · x2 + 0 |
[mark(x1)] | = | -∞ · x1 + 0 |
mark#(if(x,y,z)) | → | if_active#(mark(x),y,z) | (28) |
[ge_active(x1, x2)] | = | 0 · x1 + 0 · x2 + 0 |
[ge(x1, x2)] | = | 0 · x1 + 1 · x2 + 0 |
[minus_active(x1, x2)] | = | 6 · x1 + 0 · x2 + 0 |
[s(x1)] | = | 0 · x1 + 0 |
[div_active#(x1, x2)] | = | -∞ · x1 + 4 · x2 + 0 |
[if_active#(x1, x2, x3)] | = | -∞ · x1 + 0 · x2 + 4 · x3 + 1 |
[true] | = | 4 |
[div_active(x1, x2)] | = | -∞ · x1 + 0 · x2 + -∞ |
[0] | = | 0 |
[false] | = | 0 |
[mark#(x1)] | = | 0 · x1 + -∞ |
[if_active(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 7 · x3 + 0 |
[if(x1, x2, x3)] | = | 3 · x1 + 0 · x2 + 0 · x3 + 0 |
[div(x1, x2)] | = | 0 · x1 + 4 · x2 + 0 |
[minus(x1, x2)] | = | -∞ · x1 + 0 · x2 + 4 |
[mark(x1)] | = | 0 · x1 + -∞ |
if_active#(false,x,y) | → | mark#(y) | (32) |
mark#(if(x,y,z)) | → | mark#(x) | (27) |
[ge_active(x1, x2)] | = | 0 · x1 + 0 · x2 + 0 |
[ge(x1, x2)] | = | -∞ · x1 + 0 · x2 + 2 |
[minus_active(x1, x2)] | = | 5 · x1 + 1 · x2 + 0 |
[s(x1)] | = | 0 · x1 + -∞ |
[div_active#(x1, x2)] | = | -∞ · x1 + 1 · x2 + 7 |
[if_active#(x1, x2, x3)] | = | -∞ · x1 + 0 · x2 + 7 · x3 + 0 |
[true] | = | 2 |
[div_active(x1, x2)] | = | -∞ · x1 + 0 · x2 + 1 |
[0] | = | 0 |
[false] | = | 4 |
[mark#(x1)] | = | 0 · x1 + -∞ |
[if_active(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + -∞ · x3 + 0 |
[if(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 1 · x3 + 1 |
[div(x1, x2)] | = | 2 · x1 + 1 · x2 + 7 |
[minus(x1, x2)] | = | -∞ · x1 + -∞ · x2 + 4 |
[mark(x1)] | = | 0 · x1 + 0 |
mark#(div(x,y)) | → | mark#(x) | (25) |
[ge_active(x1, x2)] | = | 0 · x1 + -∞ · x2 + 2 |
[ge(x1, x2)] | = | 0 · x1 + -∞ · x2 + 2 |
[minus_active(x1, x2)] | = | -∞ · x1 + -∞ · x2 + 0 |
[s(x1)] | = | 0 · x1 + 1 |
[div_active#(x1, x2)] | = | 1 · x1 + -∞ · x2 + 0 |
[if_active#(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 1 · x3 + 2 |
[true] | = | 1 |
[div_active(x1, x2)] | = | 2 · x1 + -∞ · x2 + 1 |
[0] | = | 0 |
[false] | = | 1 |
[mark#(x1)] | = | 0 · x1 + 0 |
[if_active(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 0 · x3 + 3 |
[if(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 0 · x3 + 3 |
[div(x1, x2)] | = | 2 · x1 + -∞ · x2 + 1 |
[minus(x1, x2)] | = | -∞ · x1 + -∞ · x2 + 0 |
[mark(x1)] | = | 0 · x1 + -∞ |
minus_active(0,y) | → | 0 | (1) |
mark(0) | → | 0 | (2) |
minus_active(s(x),s(y)) | → | minus_active(x,y) | (3) |
mark(s(x)) | → | s(mark(x)) | (4) |
ge_active(x,0) | → | true | (5) |
mark(minus(x,y)) | → | minus_active(x,y) | (6) |
ge_active(0,s(y)) | → | false | (7) |
mark(ge(x,y)) | → | ge_active(x,y) | (8) |
ge_active(s(x),s(y)) | → | ge_active(x,y) | (9) |
mark(div(x,y)) | → | div_active(mark(x),y) | (10) |
div_active(0,s(y)) | → | 0 | (11) |
mark(if(x,y,z)) | → | if_active(mark(x),y,z) | (12) |
div_active(s(x),s(y)) | → | if_active(ge_active(x,y),s(div(minus(x,y),s(y))),0) | (13) |
if_active(true,x,y) | → | mark(x) | (14) |
minus_active(x,y) | → | minus(x,y) | (15) |
if_active(false,x,y) | → | mark(y) | (16) |
ge_active(x,y) | → | ge(x,y) | (17) |
if_active(x,y,z) | → | if(x,y,z) | (18) |
div_active(x,y) | → | div(x,y) | (19) |
mark#(div(x,y)) | → | div_active#(mark(x),y) | (26) |
The dependency pairs are split into 1 component.
mark#(s(x)) | → | mark#(x) | (21) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
mark#(s(x)) | → | mark#(x) | (21) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
ge_active#(s(x),s(y)) | → | ge_active#(x,y) | (24) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
ge_active#(s(x),s(y)) | → | ge_active#(x,y) | (24) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
minus_active#(s(x),s(y)) | → | minus_active#(x,y) | (20) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
minus_active#(s(x),s(y)) | → | minus_active#(x,y) | (20) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.