The rewrite relation of the following TRS is considered.
minus(x,0) | → | x | (1) |
minus(s(x),s(y)) | → | minus(x,y) | (2) |
double(0) | → | 0 | (3) |
double(s(x)) | → | s(s(double(x))) | (4) |
plus(s(x),s(y)) | → | s(s(plus(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))))) | (5) |
plus(s(x),x) | → | plus(if(gt(x,x),id(x),id(x)),s(x)) | (6) |
plus(zero,y) | → | y | (7) |
plus(id(x),s(y)) | → | s(plus(x,if(gt(s(y),y),y,s(y)))) | (8) |
id(x) | → | x | (9) |
if(true,x,y) | → | x | (10) |
if(false,x,y) | → | y | (11) |
not(x) | → | if(x,false,true) | (12) |
gt(s(x),zero) | → | true | (13) |
gt(zero,y) | → | false | (14) |
gt(s(x),s(y)) | → | gt(x,y) | (15) |
minus#(s(x),s(y)) | → | minus#(x,y) | (16) |
double#(s(x)) | → | double#(x) | (17) |
plus#(s(x),s(y)) | → | id#(y) | (18) |
plus#(s(x),s(y)) | → | id#(x) | (19) |
plus#(s(x),s(y)) | → | not#(gt(x,y)) | (20) |
plus#(s(x),s(y)) | → | if#(not(gt(x,y)),id(x),id(y)) | (21) |
plus#(s(x),s(y)) | → | gt#(x,y) | (22) |
plus#(s(x),s(y)) | → | if#(gt(x,y),x,y) | (23) |
plus#(s(x),s(y)) | → | plus#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (24) |
plus#(s(x),x) | → | id#(x) | (25) |
plus#(s(x),x) | → | gt#(x,x) | (26) |
plus#(s(x),x) | → | if#(gt(x,x),id(x),id(x)) | (27) |
plus#(s(x),x) | → | plus#(if(gt(x,x),id(x),id(x)),s(x)) | (28) |
plus#(id(x),s(y)) | → | gt#(s(y),y) | (29) |
plus#(id(x),s(y)) | → | if#(gt(s(y),y),y,s(y)) | (30) |
plus#(id(x),s(y)) | → | plus#(x,if(gt(s(y),y),y,s(y))) | (31) |
not#(x) | → | if#(x,false,true) | (32) |
gt#(s(x),s(y)) | → | gt#(x,y) | (33) |
The dependency pairs are split into 4 components.
minus#(s(x),s(y)) | → | minus#(x,y) | (16) |
π(minus#) | = | { 2 } |
minus#(s(x),s(y)) | → | minus#(x,y) | (16) |
There are no pairs anymore.
double#(s(x)) | → | double#(x) | (17) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
double#(s(x)) | → | double#(x) | (17) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
plus#(id(x),s(y)) | → | plus#(x,if(gt(s(y),y),y,s(y))) | (31) |
plus#(s(x),s(y)) | → | plus#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (24) |
plus#(s(x),x) | → | plus#(if(gt(x,x),id(x),id(x)),s(x)) | (28) |
[id(x1)] | = | 0 · x1 + 1 |
[gt(x1, x2)] | = | -∞ · x1 + 2 · x2 + 1 |
[true] | = | 0 |
[not(x1)] | = | 2 · x1 + 1 |
[plus#(x1, x2)] | = | 2 · x1 + 0 · x2 + 0 |
[false] | = | 0 |
[zero] | = | 2 |
[if(x1, x2, x3)] | = | 0 · x1 + 0 · x2 + 0 · x3 + 0 |
[s(x1)] | = | 4 · x1 + 2 |
gt(s(x),zero) | → | true | (13) |
gt(s(x),s(y)) | → | gt(x,y) | (15) |
gt(zero,y) | → | false | (14) |
if(true,x,y) | → | x | (10) |
if(false,x,y) | → | y | (11) |
id(x) | → | x | (9) |
not(x) | → | if(x,false,true) | (12) |
plus#(s(x),x) | → | plus#(if(gt(x,x),id(x),id(x)),s(x)) | (28) |
[id(x1)] | = | 0 · x1 + -∞ |
[gt(x1, x2)] | = | 0 · x1 + 4 · x2 + 3 |
[true] | = | 5 |
[not(x1)] | = | -∞ · x1 + 2 |
[plus#(x1, x2)] | = | 0 · x1 + 0 · x2 + -∞ |
[false] | = | 1 |
[zero] | = | 1 |
[if(x1, x2, x3)] | = | -∞ · x1 + 0 · x2 + 0 · x3 + -∞ |
[s(x1)] | = | 1 · x1 + -∞ |
if(true,x,y) | → | x | (10) |
if(false,x,y) | → | y | (11) |
id(x) | → | x | (9) |
plus#(s(x),s(y)) | → | plus#(if(gt(x,y),x,y),if(not(gt(x,y)),id(x),id(y))) | (24) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
plus#(id(x),s(y)) | → | plus#(x,if(gt(s(y),y),y,s(y))) | (31) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
gt#(s(x),s(y)) | → | gt#(x,y) | (33) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
gt#(s(x),s(y)) | → | gt#(x,y) | (33) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.