The rewrite relation of the following TRS is considered.
app(app(filter,f),nil) | → | nil | (1) |
app(app(filter,f),app(app(cons,y),ys)) | → | app(app(app(filtersub,app(f,y)),f),app(app(cons,y),ys)) | (2) |
app(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app(app(cons,y),app(app(filter,f),ys)) | (3) |
app(app(app(filtersub,false),f),app(app(cons,y),ys)) | → | app(app(filter,f),ys) | (4) |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(f,y) | (5) |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(filtersub,app(f,y)) | (6) |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(app(filtersub,app(f,y)),f) | (7) |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(app(app(filtersub,app(f,y)),f),app(app(cons,y),ys)) | (8) |
app#(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app#(filter,f) | (9) |
app#(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (10) |
app#(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app#(app(cons,y),app(app(filter,f),ys)) | (11) |
app#(app(app(filtersub,false),f),app(app(cons,y),ys)) | → | app#(filter,f) | (12) |
app#(app(app(filtersub,false),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (13) |
The dependency pairs are split into 1 component.
app#(app(app(filtersub,false),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (13) |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(f,y) | (5) |
app#(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (10) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
app#(app(app(filtersub,false),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (13) |
2 | > | 2 | |
app#(app(filter,f),app(app(cons,y),ys)) | → | app#(f,y) | (5) |
2 | > | 2 | |
1 | > | 1 | |
app#(app(app(filtersub,true),f),app(app(cons,y),ys)) | → | app#(app(filter,f),ys) | (10) |
2 | > | 2 |
As there is no critical graph in the transitive closure, there are no infinite chains.