The rewrite relation of the following TRS is considered.
app(app(plus,0),y) | → | y | (1) |
app(app(plus,app(s,x)),y) | → | app(s,app(app(plus,x),y)) | (2) |
app(app(times,0),y) | → | 0 | (3) |
app(app(times,app(s,x)),y) | → | app(app(plus,app(app(times,x),y)),y) | (4) |
app(app(map,f),nil) | → | nil | (5) |
app(app(map,f),app(app(cons,x),xs)) | → | app(app(cons,app(f,x)),app(app(map,f),xs)) | (6) |
inc | → | app(map,app(plus,app(s,0))) | (7) |
double | → | app(map,app(times,app(s,app(s,0)))) | (8) |
app#(app(plus,app(s,x)),y) | → | app#(plus,x) | (9) |
app#(app(plus,app(s,x)),y) | → | app#(app(plus,x),y) | (10) |
app#(app(plus,app(s,x)),y) | → | app#(s,app(app(plus,x),y)) | (11) |
app#(app(times,app(s,x)),y) | → | app#(times,x) | (12) |
app#(app(times,app(s,x)),y) | → | app#(app(times,x),y) | (13) |
app#(app(times,app(s,x)),y) | → | app#(plus,app(app(times,x),y)) | (14) |
app#(app(times,app(s,x)),y) | → | app#(app(plus,app(app(times,x),y)),y) | (15) |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(app(map,f),xs) | (16) |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(f,x) | (17) |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(cons,app(f,x)) | (18) |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(app(cons,app(f,x)),app(app(map,f),xs)) | (19) |
inc# | → | app#(s,0) | (20) |
inc# | → | app#(plus,app(s,0)) | (21) |
inc# | → | app#(map,app(plus,app(s,0))) | (22) |
double# | → | app#(s,0) | (23) |
double# | → | app#(s,app(s,0)) | (24) |
double# | → | app#(times,app(s,app(s,0))) | (25) |
double# | → | app#(map,app(times,app(s,app(s,0)))) | (26) |
The dependency pairs are split into 3 components.
app#(app(map,f),app(app(cons,x),xs)) | → | app#(app(map,f),xs) | (16) |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(f,x) | (17) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
app#(app(map,f),app(app(cons,x),xs)) | → | app#(app(map,f),xs) | (16) |
2 | > | 2 | |
1 | ≥ | 1 | |
app#(app(map,f),app(app(cons,x),xs)) | → | app#(f,x) | (17) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
app#(app(times,app(s,x)),y) | → | app#(app(times,x),y) | (13) |
prec(app#) | = | 0 | stat(app#) | = | lex | |
prec(times) | = | 0 | stat(times) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(app) | = | 1 | stat(app) | = | lex |
π(app#) | = | [1] |
π(times) | = | [] |
π(s) | = | [] |
π(app) | = | [2] |
app#(app(times,app(s,x)),y) | → | app#(app(times,x),y) | (13) |
There are no pairs anymore.
app#(app(plus,app(s,x)),y) | → | app#(app(plus,x),y) | (10) |
prec(app#) | = | 0 | stat(app#) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(app) | = | 1 | stat(app) | = | lex | |
prec(plus) | = | 0 | stat(plus) | = | lex |
π(app#) | = | [1] |
π(s) | = | [] |
π(app) | = | [2] |
π(plus) | = | [] |
app#(app(plus,app(s,x)),y) | → | app#(app(plus,x),y) | (10) |
There are no pairs anymore.