The rewrite relation of the following TRS is considered.
| cond(true,x,y) | → | cond(and(gr(x,0),gr(y,0)),p(x),p(y)) | (1) |
| and(true,true) | → | true | (2) |
| and(x,false) | → | false | (3) |
| and(false,x) | → | false | (4) |
| gr(0,0) | → | false | (5) |
| gr(0,x) | → | false | (6) |
| gr(s(x),0) | → | true | (7) |
| gr(s(x),s(y)) | → | gr(x,y) | (8) |
| p(0) | → | 0 | (9) |
| p(s(x)) | → | x | (10) |
| cond#(true,x,y) | → | p#(y) | (11) |
| cond#(true,x,y) | → | p#(x) | (12) |
| cond#(true,x,y) | → | gr#(y,0) | (13) |
| cond#(true,x,y) | → | gr#(x,0) | (14) |
| cond#(true,x,y) | → | and#(gr(x,0),gr(y,0)) | (15) |
| cond#(true,x,y) | → | cond#(and(gr(x,0),gr(y,0)),p(x),p(y)) | (16) |
| gr#(s(x),s(y)) | → | gr#(x,y) | (17) |
The dependency pairs are split into 2 components.
| cond#(true,x,y) | → | cond#(and(gr(x,0),gr(y,0)),p(x),p(y)) | (16) |
| [and(x1, x2)] | = | -∞ · x1 + 0 · x2 + 0 |
| [cond#(x1, x2, x3)] | = | -6 · x1 + -∞ · x2 + -3 · x3 + 0 |
| [gr(x1, x2)] | = | -2 · x1 + 5 · x2 + 0 |
| [p(x1)] | = | -5 · x1 + 1 |
| [true] | = | 7 |
| [s(x1)] | = | 6 · x1 + 9 |
| [false] | = | 0 |
| [0] | = | 1 |
| p(0) | → | 0 | (9) |
| p(s(x)) | → | x | (10) |
| gr(0,0) | → | false | (5) |
| gr(0,x) | → | false | (6) |
| gr(s(x),0) | → | true | (7) |
| and(true,true) | → | true | (2) |
| and(x,false) | → | false | (3) |
| and(false,x) | → | false | (4) |
| cond#(true,x,y) | → | cond#(and(gr(x,0),gr(y,0)),p(x),p(y)) | (16) |
There are no pairs anymore.
| gr#(s(x),s(y)) | → | gr#(x,y) | (17) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| gr#(s(x),s(y)) | → | gr#(x,y) | (17) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.