Certification Problem

Input (TPDB TRS_Standard/Der95/08)

The rewrite relation of the following TRS is considered.

D(t) 1 (1)
D(constant) 0 (2)
D(+(x,y)) +(D(x),D(y)) (3)
D(*(x,y)) +(*(y,D(x)),*(x,D(y))) (4)
D(-(x,y)) -(D(x),D(y)) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the Weighted Path Order with the following precedence and status
prec(-) = 0 status(-) = [2, 1] list-extension(-) = Lex
prec(*) = 0 status(*) = [1, 2] list-extension(*) = Lex
prec(+) = 0 status(+) = [1, 2] list-extension(+) = Lex
prec(0) = 0 status(0) = [] list-extension(0) = Lex
prec(constant) = 0 status(constant) = [] list-extension(constant) = Lex
prec(1) = 0 status(1) = [] list-extension(1) = Lex
prec(D) = 5 status(D) = [1] list-extension(D) = Lex
prec(t) = 0 status(t) = [] list-extension(t) = Lex
and the following Max-polynomial interpretation
[-(x1, x2)] = max(2, 0 + 1 · x1, 2 + 1 · x2)
[*(x1, x2)] = 0 + 1 · x1 + 1 · x2
[+(x1, x2)] = max(0, 0 + 1 · x1, 0 + 1 · x2)
[0] = max(0)
[constant] = max(4)
[1] = max(0)
[D(x1)] = max(0, 0 + 1 · x1)
[t] = max(5)
all of the following rules can be deleted.
D(t) 1 (1)
D(constant) 0 (2)
D(+(x,y)) +(D(x),D(y)) (3)
D(*(x,y)) +(*(y,D(x)),*(x,D(y))) (4)
D(-(x,y)) -(D(x),D(y)) (5)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.