The rewrite relation of the following TRS is considered.
| p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(b(x1),x3) | (2) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
The dependency pairs are split into 1 component.
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
| prec(p#) | = | 0 | stat(p#) | = | lex | |
| prec(p) | = | 0 | stat(p) | = | lex | |
| prec(b) | = | 0 | stat(b) | = | lex | |
| prec(a) | = | 0 | stat(a) | = | lex |
| π(p#) | = | 2 |
| π(p) | = | [2] |
| π(b) | = | 1 |
| π(a) | = | 1 |
| p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(a(a(x0)),p(b(x1),x3)) | (3) |
| [b(x1)] | = |
|
|||||||||||||||||||||
| [p#(x1, x2)] | = |
|
|||||||||||||||||||||
| [a(x1)] | = |
|
|||||||||||||||||||||
| [p(x1, x2)] | = |
|
| p(a(x0),p(b(x1),p(a(x2),x3))) | → | p(x2,p(a(a(x0)),p(b(x1),x3))) | (1) |
| p#(a(x0),p(b(x1),p(a(x2),x3))) | → | p#(x2,p(a(a(x0)),p(b(x1),x3))) | (4) |
There are no pairs anymore.