The rewrite relation of the following TRS is considered.
-(x,0) | → | x | (1) |
-(0,s(y)) | → | 0 | (2) |
-(s(x),s(y)) | → | -(x,y) | (3) |
lt(x,0) | → | false | (4) |
lt(0,s(y)) | → | true | (5) |
lt(s(x),s(y)) | → | lt(x,y) | (6) |
if(true,x,y) | → | x | (7) |
if(false,x,y) | → | y | (8) |
div(x,0) | → | 0 | (9) |
div(0,y) | → | 0 | (10) |
div(s(x),s(y)) | → | if(lt(x,y),0,s(div(-(x,y),s(y)))) | (11) |
-#(s(x),s(y)) | → | -#(x,y) | (12) |
lt#(s(x),s(y)) | → | lt#(x,y) | (13) |
div#(s(x),s(y)) | → | -#(x,y) | (14) |
div#(s(x),s(y)) | → | div#(-(x,y),s(y)) | (15) |
div#(s(x),s(y)) | → | lt#(x,y) | (16) |
div#(s(x),s(y)) | → | if#(lt(x,y),0,s(div(-(x,y),s(y)))) | (17) |
The dependency pairs are split into 3 components.
div#(s(x),s(y)) | → | div#(-(x,y),s(y)) | (15) |
π(div#) | = | { 1 } |
π(-) | = | { 1 } |
div#(s(x),s(y)) | → | div#(-(x,y),s(y)) | (15) |
There are no pairs anymore.
lt#(s(x),s(y)) | → | lt#(x,y) | (13) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
lt#(s(x),s(y)) | → | lt#(x,y) | (13) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-#(s(x),s(y)) | → | -#(x,y) | (12) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
-#(s(x),s(y)) | → | -#(x,y) | (12) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.