The rewrite relation of the following TRS is considered.
There are 108 ruless (increase limit for explicit display).
| SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
| SUC#(NUMERAL(n)) | → | NUMERAL#(SUC(n)) | (110) |
| SUC#(BIT1(n)) | → | SUC#(n) | (111) |
| SUC#(BIT1(n)) | → | BIT0#(SUC(n)) | (112) |
| PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
| PRE#(NUMERAL(n)) | → | NUMERAL#(PRE(n)) | (114) |
| PRE#(BIT0(n)) | → | PRE#(n) | (115) |
| PRE#(BIT0(n)) | → | eq#(n,0) | (116) |
| PRE#(BIT1(n)) | → | BIT0#(n) | (117) |
| plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
| plus#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(plus(m,n)) | (119) |
| plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
| plus#(BIT0(m),BIT0(n)) | → | BIT0#(plus(m,n)) | (121) |
| plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
| plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
| plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
| plus#(BIT1(m),BIT1(n)) | → | SUC#(plus(m,n)) | (125) |
| plus#(BIT1(m),BIT1(n)) | → | BIT0#(SUC(plus(m,n))) | (126) |
| mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
| mult#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(mult(m,n)) | (128) |
| mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
| mult#(BIT0(m),BIT0(n)) | → | BIT0#(mult(m,n)) | (130) |
| mult#(BIT0(m),BIT0(n)) | → | BIT0#(BIT0(mult(m,n))) | (131) |
| mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
| mult#(BIT0(m),BIT1(n)) | → | BIT0#(mult(m,n)) | (133) |
| mult#(BIT0(m),BIT1(n)) | → | BIT0#(BIT0(mult(m,n))) | (134) |
| mult#(BIT0(m),BIT1(n)) | → | plus#(BIT0(m),BIT0(BIT0(mult(m,n)))) | (135) |
| mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
| mult#(BIT1(m),BIT0(n)) | → | BIT0#(mult(m,n)) | (137) |
| mult#(BIT1(m),BIT0(n)) | → | BIT0#(BIT0(mult(m,n))) | (138) |
| mult#(BIT1(m),BIT0(n)) | → | plus#(BIT0(n),BIT0(BIT0(mult(m,n)))) | (139) |
| mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
| mult#(BIT1(m),BIT1(n)) | → | BIT0#(mult(m,n)) | (141) |
| mult#(BIT1(m),BIT1(n)) | → | BIT0#(BIT0(mult(m,n))) | (142) |
| mult#(BIT1(m),BIT1(n)) | → | BIT0#(n) | (143) |
| mult#(BIT1(m),BIT1(n)) | → | plus#(BIT1(m),BIT0(n)) | (144) |
| mult#(BIT1(m),BIT1(n)) | → | plus#(plus(BIT1(m),BIT0(n)),BIT0(BIT0(mult(m,n)))) | (145) |
| exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
| exp#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(exp(m,n)) | (147) |
| exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
| exp#(0,BIT0(n)) | → | mult#(exp(0,n),exp(0,n)) | (149) |
| exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
| exp#(BIT0(m),BIT0(n)) | → | mult#(exp(BIT0(m),n),exp(BIT0(m),n)) | (151) |
| exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
| exp#(BIT1(m),BIT0(n)) | → | mult#(exp(BIT1(m),n),exp(BIT1(m),n)) | (153) |
| exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
| exp#(BIT0(m),BIT1(n)) | → | mult#(BIT0(m),exp(BIT0(m),n)) | (155) |
| exp#(BIT0(m),BIT1(n)) | → | mult#(mult(BIT0(m),exp(BIT0(m),n)),exp(BIT0(m),n)) | (156) |
| exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
| exp#(BIT1(m),BIT1(n)) | → | mult#(BIT1(m),exp(BIT1(m),n)) | (158) |
| exp#(BIT1(m),BIT1(n)) | → | mult#(mult(BIT1(m),exp(BIT1(m),n)),exp(BIT1(m),n)) | (159) |
| EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
| ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
| eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
| eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
| eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
| eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
| eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
| le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
| le#(BIT0(n),0) | → | le#(n,0) | (168) |
| le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
| le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
| le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
| le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
| lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
| lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
| lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
| lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
| lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
| lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
| ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
| ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
| ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
| ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
| ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
| ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
| gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
| gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
| gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
| gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
| gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
| gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
| minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
| minus#(NUMERAL(m),NUMERAL(n)) | → | NUMERAL#(minus(m,n)) | (192) |
| minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
| minus#(BIT0(m),BIT0(n)) | → | BIT0#(minus(m,n)) | (194) |
| minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
| minus#(BIT0(m),BIT1(n)) | → | BIT0#(minus(m,n)) | (196) |
| minus#(BIT0(m),BIT1(n)) | → | PRE#(BIT0(minus(m,n))) | (197) |
| minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
| minus#(BIT1(m),BIT0(n)) | → | le#(n,m) | (199) |
| minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
| minus#(BIT1(m),BIT1(n)) | → | BIT0#(minus(m,n)) | (201) |
The dependency pairs are split into 20 components.
| eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
| eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
| eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| eq#(BIT1(m),BIT1(n)) | → | eq#(m,n) | (166) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| eq#(BIT0(m),BIT0(n)) | → | eq#(m,n) | (165) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| eq#(NUMERAL(m),NUMERAL(n)) | → | eq#(m,n) | (162) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| eq#(0,BIT0(n)) | → | eq#(0,n) | (164) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| exp#(NUMERAL(m),NUMERAL(n)) | → | exp#(m,n) | (146) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
| exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| exp#(BIT0(m),BIT1(n)) | → | exp#(BIT0(m),n) | (154) |
| 2 | > | 2 | |
| 1 | ≥ | 1 | |
| exp#(BIT0(m),BIT0(n)) | → | exp#(BIT0(m),n) | (150) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| exp#(0,BIT0(n)) | → | exp#(0,n) | (148) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
| exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| exp#(BIT1(m),BIT1(n)) | → | exp#(BIT1(m),n) | (157) |
| 2 | > | 2 | |
| 1 | ≥ | 1 | |
| exp#(BIT1(m),BIT0(n)) | → | exp#(BIT1(m),n) | (152) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
| mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
| mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
| mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
| mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| mult#(BIT1(m),BIT1(n)) | → | mult#(m,n) | (140) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| mult#(BIT1(m),BIT0(n)) | → | mult#(m,n) | (136) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| mult#(BIT0(m),BIT1(n)) | → | mult#(m,n) | (132) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| mult#(BIT0(m),BIT0(n)) | → | mult#(m,n) | (129) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| mult#(NUMERAL(m),NUMERAL(n)) | → | mult#(m,n) | (127) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
| plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
| plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
| plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
| plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| plus#(BIT1(m),BIT0(n)) | → | plus#(m,n) | (123) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| plus#(BIT1(m),BIT1(n)) | → | plus#(m,n) | (124) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| plus#(BIT0(m),BIT1(n)) | → | plus#(m,n) | (122) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| plus#(BIT0(m),BIT0(n)) | → | plus#(m,n) | (120) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| plus#(NUMERAL(m),NUMERAL(n)) | → | plus#(m,n) | (118) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| SUC#(BIT1(n)) | → | SUC#(n) | (111) |
| SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| SUC#(BIT1(n)) | → | SUC#(n) | (111) |
| 1 | > | 1 | |
| SUC#(NUMERAL(n)) | → | SUC#(n) | (109) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| EVEN#(NUMERAL(n)) | → | EVEN#(n) | (160) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| ODD#(NUMERAL(n)) | → | ODD#(n) | (161) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
| gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
| gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
| ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
| ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
| gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
| gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
| ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
| ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
| ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| gt#(BIT1(n),BIT1(m)) | → | gt#(n,m) | (190) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| gt#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (189) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| gt#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (188) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| ge#(BIT1(n),BIT1(m)) | → | ge#(n,m) | (184) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| ge#(BIT0(n),BIT1(m)) | → | gt#(n,m) | (183) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| gt#(BIT0(n),BIT0(m)) | → | gt#(n,m) | (187) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| gt#(NUMERAL(n),NUMERAL(m)) | → | gt#(n,m) | (185) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| ge#(BIT1(n),BIT0(m)) | → | ge#(n,m) | (182) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| ge#(BIT0(n),BIT0(m)) | → | ge#(n,m) | (181) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| ge#(NUMERAL(n),NUMERAL(m)) | → | ge#(n,m) | (179) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| ge#(0,BIT0(n)) | → | ge#(0,n) | (180) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| gt#(BIT0(n),0) | → | gt#(n,0) | (186) |
| 2 | ≥ | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
| minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
| minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
| minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
| minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| minus#(BIT1(m),BIT1(n)) | → | minus#(m,n) | (200) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| minus#(BIT1(m),BIT0(n)) | → | minus#(m,n) | (198) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| minus#(BIT0(m),BIT1(n)) | → | minus#(m,n) | (195) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| minus#(BIT0(m),BIT0(n)) | → | minus#(m,n) | (193) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| minus#(NUMERAL(m),NUMERAL(n)) | → | minus#(m,n) | (191) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| PRE#(BIT0(n)) | → | PRE#(n) | (115) |
| PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| PRE#(BIT0(n)) | → | PRE#(n) | (115) |
| 1 | > | 1 | |
| PRE#(NUMERAL(n)) | → | PRE#(n) | (113) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| eq#(BIT0(n),0) | → | eq#(n,0) | (163) |
| 2 | ≥ | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
| le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
| lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
| lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
| lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
| le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
| le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
| le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
| lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
| lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| le#(BIT1(m),BIT1(n)) | → | le#(m,n) | (172) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| le#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (171) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| lt#(BIT1(m),BIT1(n)) | → | lt#(m,n) | (178) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| lt#(BIT1(m),BIT0(n)) | → | lt#(m,n) | (177) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| lt#(BIT0(m),BIT1(n)) | → | le#(m,n) | (176) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| le#(BIT0(m),BIT1(n)) | → | le#(m,n) | (170) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| le#(BIT0(m),BIT0(n)) | → | le#(m,n) | (169) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| le#(NUMERAL(m),NUMERAL(n)) | → | le#(m,n) | (167) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| lt#(BIT0(m),BIT0(n)) | → | lt#(m,n) | (175) |
| 2 | > | 2 | |
| 1 | > | 1 | |
| lt#(NUMERAL(m),NUMERAL(n)) | → | lt#(m,n) | (173) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| lt#(0,BIT0(n)) | → | lt#(0,n) | (174) |
| 2 | > | 2 | |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| le#(BIT0(n),0) | → | le#(n,0) | (168) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| le#(BIT0(n),0) | → | le#(n,0) | (168) |
| 2 | ≥ | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.