The rewrite relation of the following TRS is considered.
f(cons(nil,y)) | → | y | (1) |
f(cons(f(cons(nil,y)),z)) | → | copy(n,y,z) | (2) |
copy(0,y,z) | → | f(z) | (3) |
copy(s(x),y,z) | → | copy(x,y,cons(f(y),z)) | (4) |
f#(cons(f(cons(nil,y)),z)) | → | copy#(n,y,z) | (5) |
copy#(0,y,z) | → | f#(z) | (6) |
copy#(s(x),y,z) | → | f#(y) | (7) |
copy#(s(x),y,z) | → | copy#(x,y,cons(f(y),z)) | (8) |
The dependency pairs are split into 1 component.
copy#(s(x),y,z) | → | copy#(x,y,cons(f(y),z)) | (8) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
copy#(s(x),y,z) | → | copy#(x,y,cons(f(y),z)) | (8) |
2 | ≥ | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.