Certification Problem

Input (TPDB TRS_Standard/SK90/2.12)

The rewrite relation of the following TRS is considered.

+(0,y) y (1)
+(s(x),y) s(+(x,y)) (2)
+(p(x),y) p(+(x,y)) (3)
minus(0) 0 (4)
minus(s(x)) p(minus(x)) (5)
minus(p(x)) s(minus(x)) (6)
*(0,y) 0 (7)
*(s(x),y) +(*(x,y),y) (8)
*(p(x),y) +(*(x,y),minus(y)) (9)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Rule Removal

Using the Weighted Path Order with the following precedence and status
prec(*) = 5 status(*) = [1, 2] list-extension(*) = Lex
prec(minus) = 1 status(minus) = [1] list-extension(minus) = Lex
prec(p) = 0 status(p) = [1] list-extension(p) = Lex
prec(s) = 0 status(s) = [1] list-extension(s) = Lex
prec(+) = 4 status(+) = [2, 1] list-extension(+) = Lex
prec(0) = 0 status(0) = [] list-extension(0) = Lex
and the following Max-polynomial interpretation
[*(x1, x2)] = 0 + 1 · x1 + 1 · x2
[minus(x1)] = 0 + 1 · x1
[p(x1)] = max(0, 0 + 1 · x1)
[s(x1)] = 0 + 1 · x1
[+(x1, x2)] = max(0, 0 + 1 · x1, 0 + 1 · x2)
[0] = max(0)
all of the following rules can be deleted.
+(0,y) y (1)
+(s(x),y) s(+(x,y)) (2)
+(p(x),y) p(+(x,y)) (3)
minus(0) 0 (4)
minus(s(x)) p(minus(x)) (5)
minus(p(x)) s(minus(x)) (6)
*(0,y) 0 (7)
*(s(x),y) +(*(x,y),y) (8)
*(p(x),y) +(*(x,y),minus(y)) (9)

1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.